938 resultados para Interfacial charging
Resumo:
A rapid and sensitive method is described to quantitatively compare tRNA pools for individual aminoacids in a single experiment. The procedure comprises of: (i) charging of total tRNA with a mixture of radiolabeled aminoacids, (ii) deacylation of the esterified tRNA with a volatile base and the recovery of the labeled aminoacid, (iii) derivatisation of the aminoacid with phenylisothiocyanate after mixing with excess of nonradioactive aminoacids, (iv) baseline separation of the phenylthiocarbamyl aminoacids by reverse phase high performance liquid chromatography monitored by A254nm and (v) quantitation of the radioactivity in individual aminoacid peaks. The radioactivity in the aminoacid peak corresponds to the quantity of the aminoacylated tRNA. The method has been successfully applied to quantitate the individual tRNA pools in the developing silk glands of Bombyx mori, a functionally adapted tissue which undergoes considerable variations in tRNA content. PSG, posterior silk gland; PITC, phenylisothiocyanate; DMAA, N,N-dimethyl-N-allylamine; APH, algal protein hydrolysate; ptc-, phenylthiocarbamyl; HPLC, high performance liquid chromatography.
Resumo:
The existing models of drop breakage in stirred turbulent dispersions are applicable only to purely viscous dispersed phases. In their present form, they are found to underpredict the diameters of the largest stable drops formed when a viscoelastic fluid is dispersed into a Newtonian liquid. In purely viscous fluids, the turbulent stresses are opposed both by the stresses due to interfacial tension and the viscous stresses generated as the drop deforms. In viscoelastic fluids, drop deformation produces additional retractive elastic stresses which also oppose turbulent stresses. As the deformation rates are large, the retractive stresses can be large in magnitude. Assuming that these additional stresses decay with time, a model of viscoelastic drop breakage in turbulent stirred dispersions has been developed. The new model quantitatively predicts the dmax of viscoelastic fluids. The model, however, does not predict the observation that when the time constant of the fluid becomes large (λ > 0.5 s), the fluid can not be dispersed into droplets up to agitator speeds of about 10 rps in our equipment.
Resumo:
A quantitative expression has been obtained for the equivalent resistance of an internal short in rechargeable cells under constant voltage charging.
Resumo:
We have used phase field simulations to study the effect of misfit and interfacial curvature on diffusion-controlled growth of an isolated precipitate in a supersaturated matrix. Treating our simulations as computer experiments, we compare our simulation results with those based on the Zener–Frank and Laraia–Johnson–Voorhees theories for the growth of non-misfitting and misfitting precipitates, respectively. The agreement between simulations and the Zener–Frank theory is very good in one-dimensional systems. In two-dimensional systems with interfacial curvature (with and without misfit), we find good agreement between theory and simulations, but only at large supersaturations, where we find that the Gibbs–Thomson effect is less completely realized. At small supersaturations, the convergence of instantaneous growth coefficient in simulations towards its theoretical value could not be tracked to completion, because the diffusional field reached the system boundary. Also at small supersaturations, the elevation in precipitate composition matches well with the theoretically predicted Gibbs–Thomson effect in both misfitting and non-misfitting systems.
Resumo:
Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I10+ ions to fluences of 1 × 1010 and 1 × 1012 ions/cm2. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate's surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.
Resumo:
A model of breakage of drops in a stirred vessel has been proposed to account for the effect of rheology of the dispersed phase. The deformation of the drop is represented by a Voigt element. A realistic description of the role of interfacial tension is incorporated by treating it as a restoring force which passes through a maximum as the drop deforms and eventually reaching a zero value at the break point. It is considered that the drop will break when the strain of the drop has reached a value equal to its diameter. An expression for maximum stable drop diameter, dmax, is derived from the model and found to be applicable over a wide range of variables, as well as to data already existing in literature. The model could be naturally extended to predict observed values of dmax when the dispersed phase is a power law fluid or a Bingham plastic.
Resumo:
Interference fits are used extensively in aircraft structural joints because of their improved fatigue performance. Recent advances in analysis of these joints have increased understanding of the nonlinear load-contact and load-interfacial slip variations in these joints. Experimental work in these problems is lacking due to difficulties in determining partial contact and partial slip along the pin-hole interface. In this paper, an experimental procedure is enumerated for determining load-contact relations in interference/clearance fits, using photoelastic models and applying a technique for detecting progress of separation/contact up to predetermined locations. The study incorporates a detailed procedure for model making, controlling interference, locating break of contact up to known locations around the interface, estimating optically the degree of interference, determining interfacial friction and evaluating stresses in the sheet. Experiments, simulating joints in large sheets, were carried out under both pin and plate loads. The present studies provide load-separation behavior in interference joint with finite interfacial friction.
Resumo:
An analysis of gas absorption accompanied by chemical reaction in the presence of interfacial resistance is presented. The analysis indicates that the effect of interfacial resistance on interphase mass transfer is significantly higher in presence of a reaction compared to the pure absorption case. For fixed values of surface resistance and contact time, the difference between the amount of gas transferred across the interface with and without surface resistance increases as the value of reaction velocity increases. For ranges of contact time and surface resistance of practical relevance, the influence of surface resistance is too high to be neglected while designing gas-liquid contactors.
Resumo:
The possibility or the impossibility of separating the particle and the electrode interactions is discussed in a wider context of the effects due to any two interaction potentials on the equation of state. The involved nature of the pressure dependence on two individually definable forces is illustrated through the Percus Yevick results for the adhesive hard spheres. An alternative form of the adsorption isotherm is given to bring home the intimate relationship between the actual equation of state and the free energy of adsorption. Thermodynamic consequences of congruence with respect to E (or q) as reflected through the linear plots of q (or E) vs. θ are well known. Mathematical consequences of simultaneous congruence have been pointed out recently. In this paper, the physical nature of congruence hypothesis is revealed. In passing "the pseudo-congruence" is also discussed. It is emphasised that the problem is no less ambiguous with regard to modelling the particle/particle interaction. The ad hoc nature of our dependence of the available equations of state is emphasised through a discussion on the HFL theory. Finally, a heuristic method for modelling ΔG mathematically-incorporating its behaviour at saturation coverages-is advanced. The more interesting aspects of this approach, which generalises almost all isotherms hitherto known, are sketched.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.
Resumo:
The interfacial shear rheological properties of a continuous single-crystalline film of CuS and a 3D particulate gel of CdS nanoparticles (3−5 nm in diameter) formed at toluene−water interfaces have been studied. The ultrathin films (50 nm in thickness) are formed in situ in the shear cell through a reaction at the toluene−water interface between a metal−organic compound in the organic layer and an appropriate reagent for sulfidation in the aqueous layer. Linear viscoelastic spectra of the nanofilms reveal solid-like rheological behavior with the storage modulus higher than the loss modulus over the range of angular frequencies probed. Large strain amplitude sweep measurements on the CdS nanofilms formed at different reactant concentrations suggest that they form a weakly flocculated gel. Under steady shear, the films exhibit a yield stress, followed by a steady shear thinning at high shear rates. The viscoelastic and flow behavior of these films that are in common with those of many 3D “soft” materials like gels, foams, and concentrated colloidal suspensions can be described by the “soft” glassy rheology model.
Resumo:
Epitaxial bilayered thin films consisting of La0.6Sr0.4MnO3 (LSMO) and 0.7Pb(Mg1/3Nb2/3)O3â0.3PbTiO3 (PMN-PT) layers of relatively different thicknesses were fabricated on LaNiO3 coated LaAlO3 (100) single crystal substrates by pulsed laser ablation technique. The crystallinity, ferroelectric, ferromagnetic, and magnetodielectric properties have been studied for all the bilayered heterostructures. Their microstructural analysis suggested possible StranskiâKrastanov type of growth mechanism in the present case. Ferroelectric and ferromagnetic characteristics of these bilayered heterostructures over a wide range of temperatures confirmed their biferroic nature. The magnetization and ferroelectric polarization of the bilayered heterostructures were enhanced with increasing PMN-PT layer thickness owing to the effect of lattice strain. In addition, evolution of the ferroelectric and ferromagnetic properties of these heterostructures with changing thicknesses of the PMN-PT and LSMO layers indicated possible influence of several interfacial effects such as space charge, depolarization field, domain wall pinning, and spin disorder on the observed properties. Dielectric properties of these heterostructures studied over a wide range of temperatures under different magnetic field strengths suggested a possible role of elastic strain mediated magnetoelectric coupling behind the observed magnetodielectric effect in addition to the influence of rearrangement of the interfacial charge carriers under an applied magnetic field.
Resumo:
Due to the advent of varied types of masonry systems a comprehensive failure mechanism of masonry essential for the understanding of its behaviour is impossible to be determined from experimental testing. As masonry is predominantly used in wall structures a biaxial stress state dominates its failure mechanism. Biaxial testing will therefore be necessary for each type of masonry, which is expensive and time consuming. A computational method would be advantageous; however masonry is complex to model which requires advanced computational modelling methods. This thesis has formulated a damage mechanics inspired modelling method and has shown that the method effectively determines the failure mechanisms and deformation characteristics of masonry under biaxial states of loading.
Resumo:
Protein-protein interactions play a Crucial role in Virus assembly and stability. With the view of disrupting capsid assembly and capturing smaller oligomers, interfacial residue mutations were carried Out in the coat protein gene of Sesbania Mosaic Virus, a T=3 ss (+) RNA plant virus. A single point mutation of a Trp 170 present at the five-fold interface of the virus to a charged residue (Glu or Lys) arrested assembly of virus like particles and resulted in stable Soluble dimers of the capsid Protein. The X-ray crystal structure of one of the isolated dimer mutants - rCP Delta N65W170K was determined to a resolution of 2.65 angstrom. Detailed analysis of the dimeric mutant protein structure revealed that a number of Structural changes take place, especially in the loop and interfacial regions during the course of assembly. The isolated chiller was ``more relaxed'' than the dimer found in the T=3 or T=1 capsids. The isolated dimer does not bind Ca2+ ion and consequently four C-terminal residues are disordered. The FG loop, which interacts with RNA in the Virus, has different conformations in the isolated dimer and the intact Virus Suggesting its flexible nature and the conformational changes that accompany assembly. The isolated choler mutant was much less stable when compared to the assembled capsids, suggesting the importance of inter-subunit interactions and Ca2+ mediated interactions in the stability of the capsids. With this study, SeMV becomes the first icosahedral virus for which X-ray crystal Structures of T=3, T=1 capsids as well as a smaller oligomer of the capsid protein have been determined.
Resumo:
A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.