945 resultados para Intelligent Welding systems
Resumo:
Many systems and applications are continuously producing events. These events are used to record the status of the system and trace the behaviors of the systems. By examining these events, system administrators can check the potential problems of these systems. If the temporal dynamics of the systems are further investigated, the underlying patterns can be discovered. The uncovered knowledge can be leveraged to predict the future system behaviors or to mitigate the potential risks of the systems. Moreover, the system administrators can utilize the temporal patterns to set up event management rules to make the system more intelligent. With the popularity of data mining techniques in recent years, these events grad- ually become more and more useful. Despite the recent advances of the data mining techniques, the application to system event mining is still in a rudimentary stage. Most of works are still focusing on episodes mining or frequent pattern discovering. These methods are unable to provide a brief yet comprehensible summary to reveal the valuable information from the high level perspective. Moreover, these methods provide little actionable knowledge to help the system administrators to better man- age the systems. To better make use of the recorded events, more practical techniques are required. From the perspective of data mining, three correlated directions are considered to be helpful for system management: (1) Provide concise yet comprehensive summaries about the running status of the systems; (2) Make the systems more intelligence and autonomous; (3) Effectively detect the abnormal behaviors of the systems. Due to the richness of the event logs, all these directions can be solved in the data-driven manner. And in this way, the robustness of the systems can be enhanced and the goal of autonomous management can be approached. This dissertation mainly focuses on the foregoing directions that leverage tem- poral mining techniques to facilitate system management. More specifically, three concrete topics will be discussed, including event, resource demand prediction, and streaming anomaly detection. Besides the theoretic contributions, the experimental evaluation will also be presented to demonstrate the effectiveness and efficacy of the corresponding solutions.
Resumo:
The outcome of this research is an Intelligent Retrieval System for Conditions of Contract Documents. The objective of the research is to improve the method of retrieving data from a computer version of a construction Conditions of Contract document. SmartDoc, a prototype computer system has been developed for this purpose. The system provides recommendations to aid the user in the process of retrieving clauses from the construction Conditions of Contract document. The prototype system integrates two computer technologies: hypermedia and expert systems. Hypermedia is utilized to provide a dynamic way for retrieving data from the document. Expert systems technology is utilized to build a set of rules that activate the recommendations to aid the user during the process of retrieval of clauses. The rules are based on experts knowledge. The prototype system helps the user retrieve related clauses that are not explicitly cross-referenced but, according to expert experience, are relevant to the topic that the user is interested in.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness. Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven- tions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary. Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems. To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].
Resumo:
Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. This thesis describes a heterogeneous database system being developed at Highperformance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i.) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii.) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii.) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv.) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v.) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi.) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii.) a framework for intelligent computing and communication on the Internet applying the concepts of our work.
Resumo:
Ageing and deterioration of infrastructure is a challenge facing transport authorities. In
particular, there is a need for increased bridge monitoring in order to provide adequate
maintenance and to guarantee acceptable levels of transport safety. The Intelligent
Infrastructure group at Queens University Belfast (QUB) are working on a number of aspects
of infrastructure monitoring and this paper presents summarised results from three distinct
monitoring projects carried out by this group. Firstly the findings from a project on next
generation Bridge Weight in Motion (B-WIM) are reported, this includes full scale field testing
using fibre optic strain sensors. Secondly, results from early phase testing of a computer
vision system for bridge deflection monitoring are reported on. This research seeks to exploit
recent advances in image processing technology with a view to developing contactless
bridge monitoring approaches. Considering the logistical difficulty of installing sensors on a
‘live’ bridge, contactless monitoring has some inherent advantages over conventional
contact based sensing systems. Finally the last section of the paper presents some recent
findings on drive by bridge monitoring. In practice a drive-by monitoring system will likely
require GPS to allow the response of a given bridge to be identified; this study looks at the
feasibility of using low-cost GPS sensors for this purpose, via field trials. The three topics
outlined above cover a spectrum of SHM approaches namely, wired monitoring, contactless
monitoring and drive by monitoring
Resumo:
This keynote presentation will report some of our research work and experience on the development and applications of relevant methods, models, systems and simulation techniques in support of different types and various levels of decision making for business, management and engineering. In particular, the following topics will be covered. Modelling, multi-agent-based simulation and analysis of the allocation management of carbon dioxide emission permits in China (Nanfeng Liu & Shuliang Li Agent-based simulation of the dynamic evolution of enterprise carbon assets (Yin Zeng & Shuliang Li) A framework & system for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps: a big data perspective (Jin Xu, Zheng Li, Shuliang Li & Yanyan Zhang) Open innovation: intelligent model, social media & complex adaptive system simulation (Shuliang Li & Jim Zheng Li) A framework, model and software prototype for modelling and simulation for deshopping behaviour and how companies respond (Shawkat Rahman & Shuliang Li) Integrating multiple agents, simulation, knowledge bases and fuzzy logic for international marketing decision making (Shuliang Li & Jim Zheng Li) A Web-based hybrid intelligent system for combined conventional, digital, mobile, social media and mobile marketing strategy formulation (Shuliang Li & Jim Zheng Li) A hybrid intelligent model for Web & social media dynamics, and evolutionary and adaptive branding (Shuliang Li) A hybrid paradigm for modelling, simulation and analysis of brand virality in social media (Shuliang Li & Jim Zheng Li) Network configuration management: attack paradigms and architectures for computer network survivability (Tero Karvinen & Shuliang Li)
Resumo:
Automotive producers are aiming to make their order fulfilment processes more flexible. Opening the pipeline of planned products for dynamic allocation to dealers/ customers is a significant step to be more flexible but the behaviour of such Virtual-Build-To-Order systems are complex to predict and their performance varies significantly as product variety levels change. This study investigates the potential for intelligent control of the pipeline feed, taking into account the current status of inventory (level and mix) and of the volume and mix of unsold products in the planning pipeline, as well as the demand profile. Five ‘intelligent’ methods for selecting the next product to be planned into the production pipeline are analysed using a discrete event simulation model and compared to the unintelligent random feed. The methods are tested under two conditions, firstly when customers must be fulfilled with the exact product they request, and secondly when customers trade-off a shorter waiting time for compromise in specification. The two forms of customer behaviour have a substantial impact on the performance of the methods and there are also significant differences between the methods themselves. When the producer has an accurate model of customer demand, methods that attempt to harmonise the mix in the system to the demand distribution are superior.
Resumo:
Abstract One of the most important challenges of this decade is the Internet of Things (IoT) that pursues the integration of real-world objects in Internet. One of the key areas of the IoT is the Ambient Assisted Living (AAL) systems, which should be able to react to variable and continuous changes while ensuring their acceptance and adoption by users. This means that AAL systems need to work as self-adaptive systems. The autonomy property inherent to software agents, makes them a suitable choice for developing self-adaptive systems. However, agents lack the mechanisms to deal with the variability present in the IoT domain with regard to devices and network technologies. To overcome this limitation we have already proposed a Software Product Line (SPL) process for the development of self-adaptive agents in the IoT. Here we analyze the challenges that poses the development of self-adaptive AAL systems based on agents. To do so, we focus on the domain and application engineering of the self-adaptation concern of our SPL process. In addition, we provide a validation of our development process for AAL systems.
Resumo:
Previous work has shown that robot navigation systems that employ an architecture based upon the idiotypic network theory of the immune system have an advantage over control techniques that rely on reinforcement learning only. This is thought to be a result of intelligent behaviour selection on the part of the idiotypic robot. In this paper an attempt is made to imitate idiotypic dynamics by creating controllers that use reinforcement with a number of different probabilistic schemes to select robot behaviour. The aims are to show that the idiotypic system is not merely performing some kind of periodic random behaviour selection, and to try to gain further insight into the processes that govern the idiotypic mechanism. Trials are carried out using simulated Pioneer robots that undertake navigation exercises. Results show that a scheme that boosts the probability of selecting highly-ranked alternative behaviours to 50% during stall conditions comes closest to achieving the properties of the idiotypic system, but remains unable to match it in terms of all round performance.
Resumo:
Part 7: Cyber-Physical Systems
Resumo:
Part 1: Introduction
Resumo:
Buses are considered a slow, low comfort and low reliability transport system, thus its negative and por image. In the framework of the 3iBS project (2012), several examples of innovative and/or effective solutions regarding the Level of Service (LoS) were analysed aiming to provide operators, practitioners and policy makers with a set of Good Practice Guidelines to strengthen the competitiveness of the bus in the urban environment. The identification of the key indicators regarding vehicles, infrastructure and operation was possible through the analysis of a set of case studies -among which Barcelona (Spain), Cagliari (Italy), London (United Kingdom), Paris and Nantes (France). A cross comparison between the case studies was carried out for contrasting the level of achievement of the different criteria considered. The information provided on Regulatory, Financial and Technical issues allows the identification of a number of specific factors influencing the implementation of a high quality transport scheme, and set the basis for the elaboration of a set of Guidelines for the implementation of an intelligent, innovative and integrated bus system, including the main barriers to be tackled.
Resumo:
Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.