976 resultados para Inside-Outside Algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloid of palladium nanoparticles has been prepared by the Solvated Metal Atom Dispersion (SMAD) method. Reaction of Pd(0) nanopowder obtained upon precipitation from the colloid, with ammonia borane (H3N center dot BH3, AB) in aqueous solutions at room temperature results in the generation of active hydrogen atoms. The active hydrogen atoms either combine with one another resulting in H-2 evolution or diffuse into the Pd lattice to afford PdHx. Diffusion of hydrogen atoms leads to an expansion of the Pd lattice. The diffused hydrogen atoms are distributed uniformly over the entire particle. These features were established using powder XRD and electron microscopy studies. The H-1 NMR spectral studies of PdHx before and after desorption of H-2 revealed that the hydrogen atoms trapped inside Pd lattice are hydridic in nature. Desorption of hydrogen from PdHx did not result in complete reversibility suggesting that some hydrogen atoms are strongly trapped inside the Pd lattice. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many problems of decision making under uncertainty the system has to acquire knowledge of its environment and learn the optimal decision through its experience. Such problems may also involve the system having to arrive at the globally optimal decision, when at each instant only a subset of the entire set of possible alternatives is available. These problems can be successfully modelled and analysed by learning automata. In this paper an estimator learning algorithm, which maintains estimates of the reward characteristics of the random environment, is presented for an automaton with changing number of actions. A learning automaton using the new scheme is shown to be e-optimal. The simulation results demonstrate the fast convergence properties of the new algorithm. The results of this study can be extended to the design of other types of estimator algorithms with good convergence properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joint decoding of multiple speech patterns so as to improve speech recognition performance is important, especially in the presence of noise. In this paper, we propose a Multi-Pattern Viterbi algorithm (MPVA) to jointly decode and recognize multiple speech patterns for automatic speech recognition (ASR). The MPVA is a generalization of the Viterbi Algorithm to jointly decode multiple patterns given a Hidden Markov Model (HMM). Unlike the previously proposed two stage Constrained Multi-Pattern Viterbi Algorithm (CMPVA),the MPVA is a single stage algorithm. MPVA has the advantage that it cart be extended to connected word recognition (CWR) and continuous speech recognition (CSR) problems. MPVA is shown to provide better speech recognition performance than the earlier techniques: using only two repetitions of noisy speech patterns (-5 dB SNR, 10% burst noise), the word error rate using MPVA decreased by 28.5%, when compared to using individual decoding. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clusters of binary patterns can be considered as Boolean functions of the (binary) features. Such a relationship between the linearly separable (LS) Boolean functions and LS clusters of binary patterns is examined. An algorithm is presented to answer the questions of the type: “Is the cluster formed by the subsets of the (binary) data set having certain features AND/NOT having certain other features, LS from the remaining set?” The algorithm uses the sequences of Numbered Binary Form (NBF) notation and some elementary (NPN) transformations of the binary data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clusters of binary patterns can be considered as Boolean functions of the (binary) features. Such a relationship between the linearly separable (LS) Boolean functions and LS clusters of binary patterns is examined. An algorithm is presented to answer the questions of the type: “Is the cluster formed by the subsets of the (binary) data set having certain features AND/NOT having certain other features, LS from the remaining set?” The algorithm uses the sequences of Numbered Binary Form (NBF) notation and some elementary (NPN) transformations of the binary data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we give a generalized predictor-corrector algorithm for solving ordinary differential equations with specified initial values. The method uses multiple correction steps which can be carried out in parallel with a prediction step. The proposed method gives a larger stability interval compared to the existing parallel predictor-corrector methods. A method has been suggested to implement the algorithm in multiple processor systems with efficient utilization of all the processors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Thesis presents a state-space model for a basketball league and a Kalman filter algorithm for the estimation of the state of the league. In the state-space model, each of the basketball teams is associated with a rating that represents its strength compared to the other teams. The ratings are assumed to evolve in time following a stochastic process with independent Gaussian increments. The estimation of the team ratings is based on the observed game scores that are assumed to depend linearly on the true strengths of the teams and independent Gaussian noise. The team ratings are estimated using a recursive Kalman filter algorithm that produces least squares optimal estimates for the team strengths and predictions for the scores of the future games. Additionally, if the Gaussianity assumption holds, the predictions given by the Kalman filter maximize the likelihood of the observed scores. The team ratings allow probabilistic inference about the ranking of the teams and their relative strengths as well as about the teams’ winning probabilities in future games. The predictions about the winners of the games are correct 65-70% of the time. The team ratings explain 16% of the random variation observed in the game scores. Furthermore, the winning probabilities given by the model are concurrent with the observed scores. The state-space model includes four independent parameters that involve the variances of noise terms and the home court advantage observed in the scores. The Thesis presents the estimation of these parameters using the maximum likelihood method as well as using other techniques. The Thesis also gives various example analyses related to the American professional basketball league, i.e., National Basketball Association (NBA), and regular seasons played in year 2005 through 2010. Additionally, the season 2009-2010 is discussed in full detail, including the playoffs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distant repeats between a pair of protein sequences can be exploited to study the various aspects of proteins such as structure-function relationship, disorders due to protein malfunction, evolutionary analysis, etc. An in-depth analysis of the distant repeats would facilitate to establish a stable evolutionary relation of the repeats with respect to their three-dimensional structure. To this effect, an algorithm has been devised to identify the distant repeats in a pair of protein sequences by essentially using the scores of PAM (Percent Accepted Mutation) matrices. The proposed algorithm will be of much use to researchers involved in the comparative study of various organisms based on the amino-acid repeats in protein sequences. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research objectives. The Special Education Strategy, the legislative change based on it, and the change in the Finnish National Core Curriculum for Pre-primary and Basic Education build the background for this study. An improvement initiative called KELPO was founded in 2008 to implement a new three-level support system in municipalities. To support this initiative, the Network of Intensified and Special Support in the Metropolitan Area was founded in 2010. The Network consists of 22 pilot schools from four metropolitan municipalities and the Centre for Educational Assessment at the University of Helsinki that carries out the developmental assessment of the initiative. The objective of my study was to form an overall view of the functioning of the Network. The data included interviews of 20 principals of the schools belonging to the Network. The interviews were conducted by the Centre for Educational Assessment in the autumn of 2010. The research question is: What do principals speak about the networking done inside and between the municipalities? Methods. I received the data as already transcribed for my use. I researched it using a narrative research approach. As a method I used both thematic reading and classifying narratives by the holistic-content. These methods belong under the analyze of narratives. I collected the narratives from the principals under themes that arose from the data delimited by my research question. The narrative analysis materialized by writing the research story, as a new story was built by the principals stories theme by theme. The classification of the narratives by the holistic-content method was realized according to what kind of a gatekeeper s role each principal had. With a gatekeeper I here mean the intermediary role of a principal between the school and outside world. In addition, I used the analysis of interactive production of the narrative when applicable. Results and conclusions. Explicit features in the story of the Network were the principals at least partial uncertainty of the purpose of the networking, lack of time and resources, changing of initiatives, and lack of continuity. Positive narratives about ownership and empowerment could also be found. Nonetheless, many of the preconditions for success described by the school reform and school networking theories were not fulfilled. According to the collective story, there was no shared goal or purpose, and nor were the needs of autonomy, competence, and relatedness fulfilled. Three different kinds of gatekeepers were found in the data: The Exemplary ones, The Survivors and The Losers. The distinguishing factor turned out to be sharing of information at school. Based on the narratives, the schools with principals taking care of sharing information were the most active in partaking in networking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel and efficient algorithm for modelling sub-65 nm clock interconnect-networks in the presence of process variation. We develop a method for delay analysis of interconnects considering the impact of Gaussian metal process variations. The resistance and capacitance of a distributed RC line are expressed as correlated Gaussian random variables which are then used to compute the standard deviation of delay Probability Distribution Function (PDF) at all nodes in the interconnect network. Main objective is to find delay PDF at a cheaper cost. Convergence of this approach is in probability distribution but not in mean of delay. We validate our approach against SPICE based Monte Carlo simulations while the current method entails significantly lower computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centred space vector PWM (CSVPWM) technique is popularly used for three level voltage source inverters. The reference voltage vector is synthesized by time-averaging of the three nearest voltage vectors produced by the inverter. Identifying the three voltage vectors, and calculation of the dwelling time for each vector are both computationally intensive. This paper analyses the process of PWM generation in CSVPWM. This analysis breaks up a three-level inverter into six different conceptual two level inverters in different regions of the fundamental cycle. Control of 3-level inverter is viewed as the control of the appropriate 2-level inverter. The analysis leads to a systematic simplification of the computations involved, finally resulting in a computationally efficient PWM algorithm. This algorithm exploits the equivalence between triangle comparison and space vector approaches to PWM generation. This algorithm does not involve any 3-phase/2-phase or 2-phase/3-phase transformation. This also does not involve any transformation from rectangular to polar coordinates, and vice versa. Further no evaluation of trigonometric functions is necessary. This algorithm also provides for the mitigation of DC neutral point unbalance, and is well suited to digital implementation. Simulation and experimental results are presented.