918 resultados para In situ processing (Mining)
Resumo:
D Le Messurier, R Winter, CM Martin; J Appl Cryst 39 (2006) 589 Sponsorship: EPSRC, CCLRC, Pilkington
Resumo:
R Winter, D Le Messurier, CM Martin; Cryst Rev 12 (2006) 3 Sponsorship: EPSRC, CCLRC, Pilkington
Resumo:
Winter, Rudolf; Jones, A.R.; Florian, P.; Massiot, D., (2005) 'Tracing the reactive melting of glass-forming silicate batches by in situ Na-23 NMR', Journal of Physical Chemistry B 109(10) pp.4324-4332 RAE2008
Resumo:
Chungui Lu, Olga A. Koroleva, John F. Farrar, Joe Gallagher, Chris J. Pollock, and A. Deri Tomos (2002). Rubisco small subunit, chlorophyll a/b-binding protein and sucrose : fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light. Plant Physiology, 130 (3) pp.1335-1348 Sponsorship: BBSRC RAE2008
Resumo:
Robert Hasterok, Agnieszka Marasek, Iain S. Donnison, Ian Armstead, Ann Thomas, Ian P. King, Elzbieta Wolny, Dominika Idziak, John Draper and Glyn Jenkins (2006). Alignment of the genomes of brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization.Genetics, 73 (1), 349-362. Sponsorship: Royal Society / BBSRC;BBSRC RAE2008
Resumo:
It is well documented that the presence of even a few air bubbles in water can signifi- cantly alter the propagation and scattering of sound. Air bubbles are both naturally and artificially generated in all marine environments, especially near the sea surface. The abil- ity to measure the acoustic propagation parameters of bubbly liquids in situ has long been a goal of the underwater acoustics community. One promising solution is a submersible, thick-walled, liquid-filled impedance tube. Recent water-filled impedance tube work was successful at characterizing low void fraction bubbly liquids in the laboratory [1]. This work details the modifications made to the existing impedance tube design to allow for submersed deployment in a controlled environment, such as a large tank or a test pond. As well as being submersible, the useable frequency range of the device is increased from 5 - 9 kHz to 1 - 16 kHz and it does not require any form of calibration. The opening of the new impedance tube is fitted with a large stainless steel flange to better define the boundary condition on the plane of the tube opening. The new device was validated against the classic theoretical result for the complex reflection coefficient of a tube opening fitted with an infinite flange. The complex reflection coefficient was then measured with a bubbly liquid (order 250 micron radius and 0.1 - 0.5 % void fraction) outside the tube opening. Results from the bubbly liquid experiments were inconsistent with flanged tube theory using current bubbly liquid models. The results were more closely matched to unflanged tube theory, suggesting that the high attenuation and phase speeds in the bubbly liquid made the tube opening appear as if it were radiating into free space.
Resumo:
We describe a 42.6 Gbit/s all-optical pattern recognition system which uses semiconductor optical amplifiers (SOAs). A circuit with three SOA-based logic gates is used to identify the presence of specific port numbers in an optical packet header.
Resumo:
BACKGROUND: HER-2/neu status was determined by immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH) methods in more than 300 paraffin-embedded primary breast cancer samples. MATERIALS AND METHODS: HER-2/neu status was determined by FISH using the PathVysion kit (Vysis) and by IHC using either a monoclonal antibody CB11 or a cocktail of antibodies: the monoclonal TAB250 and the polyclonal pAb1. RESULTS: Of the 324 cases evaluable by IHC, 65 out of 318 (20%) and 24 out of 324 (7%) were scored as positive when using the antibody cocktail and the CB11, respectively. HER-2/neu gene amplification occured in 64 out of 324 cases (20%). Concordance of FISH and IHC was found in 285 out of 318 cases (90%) and 278 out of 324 cases (86%) using the cocktail and the CB11, respectively. CONCLUSION: The cost-effectiveness analysis revealed that the use of a sensitive IHC method followed by confirmation of positive results by FISH considerably decreased the FISH costs and may become standard practice for HER-2/neu evaluation.
Resumo:
info:eu-repo/semantics/published
Resumo:
Thermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.
Resumo:
The effect of concentrating semi-volatile aerosols using a water-condensation technology was investigated using the Versatile Aerosol Concentration Enrichment System (VACES) and the Aerodyne Aerosol Mass Spectrometer (AMS) during measurements of ambient aerosol in Pittsburgh, PA. It was found that the shape of the sulfate mass-weighed size distribution was approximately preserved during passage through the concentrator for all the experiments performed, with a mass enhancement factor of about 10-20 depending on the experiment. The size distributions of organics, ammonium and nitrate were preserved on a relatively clean day (sulfate concentration around 7μg/m3), while during more polluted conditions the concentration of these compounds, especially nitrate, was increased at small sizes after passage through the concentrator. The amount of the extra material, however, is rather small in these experiments: between 2.4% and 7.5% of the final concentrated PM mass is due to "artifact" condensation. An analysis of thermodynamic processes in the concentrator indicates that the extra particle material detected can be explained by redistribution of gas-phase material to the aerosol phase in the concentrator. The analysis shows that the condensation of extra material is expected to be larger for water-soluble semi-volatile material, such as nitrate, which agrees with the observations. The analysis also shows that artifact formation of nitrate will be more pronounced in ammonia-limited conditions and virtually undetectable in ammonia-rich conditions. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
info:eu-repo/semantics/published
Resumo:
Peptide microarrays are useful tools for characterizing the humoral response against methylated antigens. They are usually prepared by printing unmodified and methylated peptides on substrates such as functionalized microscope glass slides. The preferential capture of antibodies by methylated peptides suggests the specific recognition of methylated epitopes. However, unmodified peptide epitopes can be masked due to their interaction with the substrate. The accessibility of unmodified peptides and thus the specificity of the recognition of methylated peptide epitopes can be probed using the in situ methylation procedure described here. Alternately, the in situ methylation of peptide microarrays allows probing the presence of antibodies directed toward methylated epitopes starting from easy-to-make and cost-effective unmodified peptide libraries. In situ methylation was performed using formaldehyde in the presence of sodium cyanoborohydride and nickel chloride. This chemical procedure converts lysine residues into mono- or dimethyl lysines.