980 resultados para IMMUNOFLUORESCENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Sunitinib (VEGFR/PDGFR inhibitor) and everolimus (mTOR inhibitor) are both approved for advanced renal cell carcinoma (RCC) as first-line and second-line therapy, respectively. In the clinics, sunitinib treatment is limited by the emergence of acquired resistance, leading to a switch to second-line treatment at progression, often based on everolimus. No data have been yet generated on programmed alternating sequential strategies combining alternative use of sunitinib and everolimus before progression. Such strategy is expected to delay the emergence of acquired resistance and improve tumour control. The aim of our study was to assess the changes in tumours induced by three different sequences administration of sunitinib and everolimus. METHODS: In human Caki-1 RCC xenograft model, sunitinib was alternated with everolimus every week, every 2 weeks, or every 3 weeks. Effects on necrosis, hypoxia, angiogenesis, and EMT status were assessed by immunohisochemistry and immunofluorescence. RESULTS: Sunitinib and everolimus programmed sequential regimens before progression yielded longer median time to tumour progression than sunitinib and everolimus monotherapies. In each group of treatment, tumour growth control was associated with inhibition of mTOR pathway and changes from a mesenchymal towards an epithelial phenotype, with a decrease in vimentin and an increase in E-cadherin expression. The sequential combinations of these two agents in a RCC mouse clinical trial induced antiangiogenic effects, leading to tumour necrosis. CONCLUSIONS: In summary, our study showed that alternate sequence of sunitinib and everolimus mitigated the development of mesenchymal phenotype compared with sunitinib as single agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed the expression of glial hyaluronate-binding protein (GHAP), an integral component of the extracellular matrix, in aggregating brain cell cultures of fetal rat telencephalon using immunofluorescence. GHAP immunoreactivity appeared after 1 week in culture, simultaneous with the first deposits of myelin basic protein, and showed a development-dependent increase. Comparison of glia-enriched and neuron-enriched cultures showed that only glial cells express GHAP. Three peptide growth factors, epidermal growth factor, fibroblast growth factor and platelet-derived growth factor, which are known to stimulate the differentiation of glial cells, modulated the deposit of GHAP immunoreactivity. The 3-dimensional structure of aggregate cultures promoted GHAP deposition, suggesting that cell-cell interactions are required for extracellular matrix formation. Furthermore GHAP production seemed to depend on the developmental stage of the glial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allodynia (pain in response to normally non painful stimulation) and paresthesia (erroneous sensory experience) are two debilitating symptoms of neuropathic pain. These stem, at least partly, from profound changes in the non-nociceptive sensory pathway that comprises large myelinated neuronal afferents terminating in the gracile and cuneate nuclei. Further than neuronal changes, well admitted evidence indicates that glial cells (especially in the spinal cord) are key actors in neuropathic pain, in particular the possible alteration in astrocytic capacity to reuptake neurotransmitters (glutamate and GABA). Yet, the possibility of such a changed astrocytic scavenging capacity remains unexplored in the dorsal column pathway. The present study was therefore undertaken to assess whether peripheral nerve injury (spared nerve injury model, SNI) could trigger a glial reaction, and especially changes in glutamate and GABA transporters, in the gracile nucleus. SNI surgery was performed on male Sprague-Dawley rats. Seven days after surgery, rats were used for immunofluorescence (fixation and brain slicing), western-blot (fresh brain freezing and protein extraction) or GABA reuptake on synaptosomes. We found that SNI results in a profound glial reaction in the ipsilateral gracile nucleus. This reaction was characterized by an enhanced immunolabelling for microglial marker Iba1 as well as astrocytic protein GFAP (further confirmed by western-blot, p <0.05, n = 7). These changes were not observed in sham animals. Immunofluorescence and western-blot analysis shows that the GABA transporter GAT-1 is upregulated in the ipsilateral gracile nucleus (p <0.001; n = 7), with no detectable change in GAT-3 or glutamate transporters EAAT-1 and EAAT-2. Double immunoflurescence shows that GAT-1 and GFAP colocalize within the same cells. Furthermore, the upregulation of GFAP and GAT-1 were shown to occur all along the rostrocaudal axis of the gracile nucleus. Finally, synaptosomes from ipsilateral gracile nucleus show an increased capacity to reuptake GABA. Together, the data presented herein show that glial cells in the gracile nucleus react to neuropathic lesion, in particular through an upregulation of the GABA transporter GAT-1. Hence, this study points to role of an increased GABA transport in the dorsal column nuclei in neuropathic pain, calling attention to GAT-1 as a putative future pharmacological target to treat allodynia and paresthesia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In adipocytes and muscle cells, the GLUT4 glucose transporter isoform is present in intracellular vesicles which continuously recycle between an intracytoplasmic location and the plasma membrane. It is not clear whether the GLUT4-vesicles represent a specific kind of vesicle or resemble typical secretory granules or synaptic-like microvesicles. To approach this question, we expressed GLUT4 in the beta cell line RINm5F and determined its intracellular localization by subcellular fractionation and by immunofluorescence and immunoelectron microscopy. GLUT4 was not found in insulin granules but was associated with a subpopulation of smooth-surface vesicles present in the trans-Golgi region and in vesicular structures adjacent to the plasma membrane. In the trans-Golgi region, GLUT4 did not colocalize with synaptophysin or TGN38. Incubation of the cells with horseradish peroxidase (HRP) led to colocalization of HRP and GLUT4 in some endosomal structures adjacent to the plasma membrane and in occasional trans-Golgi region vesicles. When cells were incubated in the presence of Bafilomycin A, analysis by confocal microscopy revealed GLUT4 in numerous large spots present throughout the cytoplasm, many of which costained for TGN38 and synaptophysin. By immunoelectron microscopy, numerous endosomes were observed which stained strongly for GLUT4. Together our data demonstrate that ectopic expression of GLUT4 in insulinoma cells reveals the presence of a subset of vesicular structures distinct from synaptic-like vesicles and insulin secretory granules. Furthermore, they indicate that GLUT4 constitutively recycles between the plasma membrane and its intracellular location by an endocytic route also taken by TGN38 and synaptophysin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Atrial natriuretic peptide (ANP) is a secretory hormone displaying diuretic, natriuretic, and vasorelaxant activities. Recently, its lipolytic activity has been reported. Since the expression of ANP in adipose tissue has not been documented, we used real-time reverse transcriptase polymerase chain reaction (RT-PCR) to investigate the expression of ANP in human adipose tissue and preadipocytes. RESEARCH METHODS AND PROCEDURES: RNA was extracted from the human adipose tissue of severely obese premenopausal women as well as from human preadipocytes. For human preadipocytes, two cell systems were investigated: the human preadipose immortalized (Chub-S7) cells, a well-characterized human preadipose cell line, and primary preadipocytes derived from the stromal vascular fraction of the human adipose tissue. We measured the mRNA of ANP, of corin (a transmembrane serine protease involved in the conversion of pro-ANP to ANP) and of uncoupling protein 2 (UCP2; a control gene known to be ubiquitously expressed). The expression of ANP was also investigated using immunofluorescence and radioimmunoassay in Chub-S7 cells and human primary preadipocytes in culture. RESULTS: Our results indicate that ANP and corin are expressed at the mRNA level in human adipose tissue and preadipocytes. Immunofluorescence experiments demonstrated that pro-ANP was expressed in Chub-S7 cells. In addition, ANP secretion could be measured in Chub-S7 cells and human primary preadipocytes in culture. Rosiglitazone, a selective peroxisome proliferator-activated receptor type gamma (PPAR-gamma) agonist promoting adipocyte differentiation, was found to modulate both ANP expression and secretion in preadipocytes. DISCUSSION: Our findings suggest the existence of an autocrine/paracrine system for ANP in the human adipose tissue whose implications in lipolysis and cardiovascular function need to be further explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To localize collagen types I, III, and IV, laminin and fibronectin in the anterior human lens capsule. MATERIAL AND METHODS: Twenty-one anterior capsules were sampled by capsulorhexis during extracapsular cataract extraction (mean age 71.5). All capsules were labelled by an immunostaining specific for each antibodies. Immunostaining of four capsules was revealed with immunoperoxydase and seventeen using indirect immunofluorescence. RESULTS: Labelling of collagen types I and III was observed throughout the entire thickness of the capsule for each technique, the strongest labelling was found in the base of the epithelial cells with immunofluorescence. Collagen type IV was observed at the base of the epithelial cells whichever technique was used. Laminin could be detected in the inner layer of the capsule, using immunoperoxydase or immunofluorescence. No specific labelling was found for fibronectin using the two techniques. CONCLUSIONS: Different kinds of collagens have been found in capsules, more particularly the type III. The latter does not appear on other ocular basement membrane. Because of this uneven distribution in the capsule's thickness, each collagen might have a specific function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antibody display technology (ADT) such as phage display (PD) has substantially improved the production of monoclonal antibodies (mAbs) and Ab fragments through bypassing several limitations associated with the traditional approach of hybridoma technology. In the current study, we capitalized on the PD technology to produce high affinity single chain variable fragment (scFv) against tumor necrosis factor-alpha (TNF- α), which is a potent pro-inflammatory cytokine and plays important role in various inflammatory diseases and malignancies. To pursue production of scFv antibody fragments against human TNF- α, we performed five rounds of biopanning using stepwise decreased amount of TNF-α (1 to 0.1 μ g), a semi-synthetic phage antibody library (Tomlinson I + J) and TG1 cells. Antibody clones were isolated and selected through enzyme-linked immunosorbent assay (ELISA) screening. The selected scFv antibody fragments were further characterized by means of ELISA, PCR, restriction fragment length polymorphism (RFLP) and Western blot analyses as well as fluorescence microscopy and flow cytometry. Based upon binding affinity to TNF-α , 15 clones were selected out of 50 positive clones enriched from PD in vitro selection. The selected scFvs displayed high specificity and binding affinity with Kd values at nm range to human TNF-α . The immunofluorescence analysis revealed significant binding of the selected scFv antibody fragments to the Raji B lymphoblasts. The effectiveness of the selected scFv fragments was further validated by flow cytometry analysis in the lipopolysaccharide (LPS) treated mouse fibroblast L929 cells. Based upon these findings, we propose the selected fully human anti-TNF-α scFv antibody fragments as potential immunotherapy agents that may be translated into preclinical/clinical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A monoclonal antibody, LAU-A1, which selectively reacts with all cells of the T-lineage, was derived from a fusion between spleen cells of a mouse immunized with paediatric thymocytes and mouse myeloma P X 63/Ag8 cells. As shown by an antibody-binding radioimmunoassay and analysis by flow microfluorometry of cells labelled by indirect immunofluorescence, the LAU-A1 antibody reacted with all six T-cell lines but not with any of the B-cell lines or myeloid cell lines tested from a panel of 17 human hematopoietic cell lines. The LAU-A1 antibody was also shown to react with the majority of thymocytes and E-rosette-enriched peripheral blood lymphocytes. Among the malignant cell populations tested, the blasts from all 20 patients with acute T-cell lymphoblastic leukemia (T-ALL) were found to react with the LAU-A1 antibody, whereas blasts from 85 patients with common ALL and 63 patients with acute myeloid leukemias were entirely negative. Examination of frozen tissue sections from fetal and adult thymuses stained by an indirect immunoperoxidase method revealed that cells expressing the LAU-A1 antigen were localized in both the cortex and the medulla. From the very broad reactivity spectrum of LAU-A1 antibody, we conclude that this antibody is directed against a T-cell antigen expressed throughout the T-cell differentiation lineage. SDS-PAGE analysis of immunoprecipitates formed by LAU-A1 antibody with detergent lysates of radiolabeled T-cells showed that the LAU-A1 antigen had an apparent mol. wt of 76,000 under non-reducing conditions. Under reducing conditions a single band with an apparent mol. wt of 40,000 was observed. Two-dimensional SDS-PAGE analysis confirmed that the 76,000 mol. wt component consisted of an S-S-linked dimeric complex. The surface membrane expression of LAU-A1 antigen on HSB-2 T-cells was modulated when these cells were cultured in the presence of LAU-A1 antibody. Re-expression of LAU-A1 antigen occurred within 24 hr after transfer of the modulated cells into antibody-free medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel þ androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-k B transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44 þ subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44 þ subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evi-dence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell surface heparan sulfate proteoglycans (HSPGs) participate in molecular events that regulate cell adhesion, migration, and proliferation. The present study demonstrates that soluble heparin-binding proteins or cross-linking antibodies induce the aggregation of cell surface HSPGs and their distribution along underlying actin filaments. Immunofluorescence and confocal microscopy and immunogold and electron microscopy indicate that, in the absence of ligands, HSPGs are irregularly distributed on the fibroblast cell surface, without any apparent codistribution with the actin cytoskeleton. In the presence of ligand (lipoprotein lipase) or antibodies against heparan sulfate, HSPGs aggregate and colocalize with the actin cytoskeleton. Triton X-100 extraction and immunoelectron microscopy have demonstrated that in this condition HSPGs were clustered and associated with the actin filaments. Crosslinking experiments that use biotinylated lipoprotein lipase have revealed three major proteoglycans as binding sites at the fibroblast cell surface. These cross-linked proteoglycans appeared in the Triton X-100 insoluble fraction. Platinum/carbon replicas of the fibroblast surface incubated either with lipoprotein lipase or antiheparan sulfate showed large aggregates of HSPGs regularly distributed along cytoplasmic fibers. Quantification of the spacing between HSPGs by confocal microscopy confirmed that the nonrandom distribution of HSPG aggregates along the actin cytoskeleton was induced by ligand binding. When cells were incubated either with lipoprotein lipase or antibodies against heparan sulfate, the distance between immunofluorescence spots was uniform. In contrast, the spacing between HSPGs on fixed cells not incubated with ligand was more variable. This highly organized spatial relationship between actin and proteoglycans suggests that cortical actin filaments could organize the molecular machinery involved in signal transduction and molecular movements on the cell surface that are triggered by heparin-binding proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malate synthase (MS; EC 4.1.3.2), an enzyme specific to the glyoxylate cycle, was studied in cotyledons of dark-grown soybean (Glycine max L) seedlings with light and electron microscopy techniques. Immunogold localization confirmed biochemical evidence that MS from soybean is a glyoxysomal matrix enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea), a decrease in the initial primordial follicle number, high follicle-stimulating hormone (FSH) levels and hypoestrogenism. Although the etiology of a majority of POI cases is not yet identified, several data suggest that POI has a strong genetic component. Conventional cytogenetic and molecular analyses have identified regions of the X chromosome that are associated with ovarian function, as well as POI candidate genes, such as FMR1 and DIAPH2. Here we describe a 10.5-year-old girl presenting with high FSH and luteinizing hormone (LH) levels, pathologic GH stimulation arginine and clonidine tests, short stature, pterygium, ovarian dysgenesis, hirsutism and POI. RESULTS: Cytogenetic analysis demonstrated a balanced reciprocal translocation between the q arms of chromosomes X and 1, with breakpoints falling in Xq21 and 1q41 bands. Molecular studies did not unravel any chromosome microdeletion/microduplication, and no XIST-mediated inactivation was found on the derivative chromosome 1. Interestingly, through immunofluorescence assays, we found that part of the Xq21q22 trait, translocated to chromosome 1q41, was late replicating and therefore possibly inactivated in 30 % metaphases both in lymphocytes and skin fibroblasts, in addition to a skewed 100 % inactivation of the normal X chromosome. These findings suggest that a dysregulation of gene expression might occur in this region. Two genes mapping to the Xq translocated region, namely DIAPH2 and FMR1, were found overexpressed if compared with controls. CONCLUSIONS: We report a case in which gonadal dysgenesis and POI are associated with over-expression of DIAPH2 gene and of FMR1 gene in wild type form. We hypothesize that this over-expression is possibly due to a phenomenon known as "chromosomal position effect", which accounts for gene expression variations depending on their localization within the nucleus. For the same effect a double mosaic inactivation of genes mapping to the Xq21-q22 region, demonstrated by immunofluorescence assays, may be the cause of a functional Xq partial monosomy leading to most Turner traits of the proband's phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS. METHODS: IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively. RESULTS: In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis. CONCLUSIONS: We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in seafood production, especially in mariculture worldwide, has brought out the need of continued monitoring of shellfish production areas in order to ensure safety to human consumption. The purpose of this research was to evaluate pathogenic protozoa, viruses and bacteria contamination in oysters before and after UV depuration procedure, in brackish waters at all stages of cultivation and treatment steps and to enumerate microbiological indicators of fecal contamination from production site up to depuration site in an oyster cooperative located at the Southeastern estuarine area of Brazil. Oysters and brackish water were collected monthly from September 2009 to November 2010. Four sampling sites were selected for enteropathogens analysis: site 1- oyster growth, site 2- catchment water (before UV depuration procedure), site 3 - filtration stage of water treatment (only for protozoa analysis) and site 4- oyster's depuration tank. Three microbiological indicators ! were examined at sites 1, 2 and 4. The following pathogenic microorganisms were searched: Giardia cysts, Cryptosporidium oocysts, Human Adenovirus (HAdV), Hepatitis A virus (HAV), Human Norovirus (HnoV) (genogroups I and II), JC strain Polyomavirus (JCPyV) and Salmonella sp. Analysis consisted of molecular detection (qPCR) for viruses (oysters and water samples); immunomagnetic separation followed by direct immunofluorescence assay for Cryptosporidium oocysts and Giardia cysts and also molecular detection (PCR) for the latter (oysters and water samples); commercial kit (Reveal-Neogee (R)) for Salmonella analysis (oysters). Giardia was the most prevalent pathogen in all sites where it was detected: 36.3%, 18.1%, 36.3% and 27.2% of water from sites 1, 2, 3 and 4 respectively; 36.3% of oysters from site 1 and 54.5% of depurated oysters were harboring Giardia cysts. The huge majority of contaminated samples were classified as Giardia duodenalis. HAdv was detected in water and o! ysters from growth site and HnoV GI in two batches of oysters ! (site 1) in huge concentrations (2.11 x 10(13), 3.10 x 10(12) gc/g). In depuration tank site, Salmonella sp., HAV (4.84 x 10(3)) and HnoV GII (7.97 x 10(14)) were detected once in different batches of oysters. Cryptosporidium spp. oocysts were present in 9.0% of water samples from site four. These results reflect the contamination of oysters even when UV depuration procedures are employed in this shellfish treatment plant. Moreover, the molecular comprehension of the sources of contamination is necessary to develop an efficient management strategy allied to shellfish treatment improvement to prevent foodborne illnesses. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In previous studies, we have demonstrated the inhibition of CD4 expression in rat lymphocytes treated with phorbol myristate acetate (PMA) by antisense oligonucleotides (AS-ODNs) directed against the AUG start region of the cd4 gene. The aim of the present study was to inhibit CD4 expression in lymphocytes without promoting CD4 synthesis and to determine the effect of this inhibition on CD4+ T cell function. Four 21-mer ODNs against the rat cd4 gene (AS-CD4-1 to AS-CD4-4) were used. Surface CD4 expression was measured by immunofluorescence staining and flow cytometry, and mRNA CD4 expression was measured by RT-PCR. T CD4+ cell function was determined by specific and unspecific proliferative response of rat-primed lymphocytes. After 24 hours of incubation, AS-CD4-2 and AS-CD4-4 reduced lymphocyte surface CD4 expression by 40%. This effect remained for 72 hours and was not observed on other surface molecules, such as CD3, CD5, or CD8. CD4 mRNA expression was reduced up to 40% at 24 hours with AS-CD4-2 and AS-CD4-4. After 48 hours treatment, CD4 mRNA decreased up to 27% and 29% for AS-CD4-2 and AS-CD4-4, respectively. AS-CD4-2 and AS-CD4-4 inhibited T CD4+ cell proliferative response upon antigen-specific and unspecific stimuli. Therefore, AS-ODNs against CD4 molecules inhibited surface and mRNA CD4 expression, under physiologic turnover and, consequently, modulate T CD4+ cell reactivity.