852 resultados para Hydrophobic electrolytes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two IS- and 16-residue peptides containing a-aminoisobutyric acid (Aib) have been synthesized, as part of a strategy to construct stereochemically rigid peptide helices, in a modular approach to design of protein mimics. The peptides Boc-(Val-Ala-Leu-Aib),-OMe ( I ) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-(Val-Ala-Leu-Aib()11z)- OhaMvee been crystallized.Both crystals are stable only in the presence of mother liquor or water. The crystal data are as follows. I: C78H140N16019~2H20,P2,, a = 16.391 (3) A, b = 16.860 (3) A, c = 18.428 (3) A, p = 103.02 (I)O, Z = 2, R = 9.6% for 3445 data with lFol >30(F), resolution 0.93 A. 11: C7,Hl,,N,S018.7.5H,0, C2221, a = 18.348 ( 5 ) A, b = 47.382 (1 1) A, c = 24.157 ( 5 ) A, Z =8, R = l0,6%, for 3147 data with lFol > 3a(F), resolution 1.00 A. The 15-residue peptide (11) is entirely a helical, while the 16-residue peptide ( I ) has a short segment of 310 helix at the N terminus. The packing of the helices in the crystals is rather incfficicnt with no particular attractions between Leu-Leu side chains, or any other pair. Both crystals have fairly large voids, which are filled with water molecules in a disordered fashion. Water molecule sites near the polar head-to-tail regions are well detcrmined, those closer to the hydrophobic side chains less so and a number of possible water sites in the remaining "empty" space are not determined. No interdigitation of Leu side chains is observed in the crystal as is hypothesized in the "leucine zipper" class of DNA binding proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of the nature and distribution of disallowed Ramachandran conformations of amino acid residues observed in high resolution protein crystal structures has been carried out. A data set consisting of 110 high resolution, non-homologous, protein crystal structures from the Brookhaven Protein Data Bank was examined. The data set consisted of a total of 18,708 non-Gly residues, which were characterized on the basis of their backbone dihedral angles (φ, ψ). Residues falling outside the defined “broad allowed limits” on the Ramachandran map were chosen and the reportedB-factor value of the α-carbon atom was used to further select well defined disallowed conformations. The conformations of the selected 66 disallowed residues clustered in distinct regions of the Ramachandran map indicating that specific φ, ψ angle distortions are preferred under compulsions imposed by local constraints. The distribution of various amino acid residues in the disallowed residue data set showed a predominance of small polar/charged residues, with bulky hydrophobic residues being infrequent. As a further check, for all the 66 cases non-hydrogen van der Waals short contacts in the protein structures were evaluated and compared with the ideal “Ala-dipeptide” constructed using disallowed dihedral angle (φ, ψ) values. The analysis reveals that short contacts are eliminated in most cases by local distortions of bond angles. An analysis of the conformation of the identified disallowed residues in related protein structures reveals instances of conservation of unusual stereochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lipid A and lipopolysaccharide (LPS) binding and neutralizing activities of a synthetic, polycationic, amphiphilic peptide were studied. The branched peptide, designed as a functional analog of polymyxin B, has a six residue hydrophobic sequence, bearing at its N-terminus a penultimate lysine residue whose alpha- and epsilon-amino groups are coupled to two terminal lysine residues. In fluorescence spectroscopic studies designed to examine relative affinities of binding to the toxin, neutralization of surface charge and fluidization of the acyl domains, the peptide was active, closely resembling the effects of polymyxin B and its nonapeptide derivative; however, the synthetic peptide does not induce phase transitions in LPS aggregates as do polymyxin B and polymyxin B nonapeptide. The peptide was also comparable with polymyxin B in its ability to inhibit LPS-mediated IL-l and IL-6 release from human peripheral blood mononuclear cells. The synthetic compound is devoid of antibacterial activities and did not induce conductance fluxes in LPS-containing asymmetric planar membranes. These results strengthen the premise that basicity and amphiphilicity are necessary and sufficient physical properties that ascribe endotoxin binding and neutralizing activities, and further suggest that antibacterial/membrane perturbant and LPS neutralizing activities are dissociable, which may be of value in designing LPS-sequestering agents of low toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two series of peptides, designated K and NK were synthesized and tested for lipid A binding and neutralizing properties. K-2, which has an 11-residue amphiphilic core, and a branched N-terminus bearing two branched lysinyl residues does not bind lipid A, while NK2, also with an 11-residue amphiphilic core comprised entirely of non-ionizable residues, and a similarly branched, cationic N-terminus, binds lipid A very weakly. Both peptides do not inhibit lipopolysaccharide (LPS) activity in the Limulus assay, nor do they inhibit LPS-induced TNF-alpha and NO production in 5774 cells. These results are entirely unlike a homologous peptide with an exclusively hydrophobic core whose LPS-binding and neutralizing properties are very similar to that of polymyxin B [David SA, Awasthi SK, Wiese A et al. Characterization of the interactions of a polycationic, amphiphilic, terminally branched oligopeptide with lipid A and lipopolysaccharide from the deep rough mutant of Salmonella minnesota. J Endotoxin Res 1996; 3: 369-379]. These data suggest that a clear segregation of charged and apolar domains is crucial in molecules designed for purposes of LPS sequestration and that head-tail (polar) orientation of the cationic/hydrophobic regions is preferable to molecules with mixed or facial cationic/amphipathic character.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C4), -octanoyl (C8), -decanoyl (C10), -dodecanoyl (C12) and -tetradecanoyl (C14)-ACPs display marked changes in backbone HN, Cα and Cβ chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acyl Carrier Protein (ACP) from the malaria parasite, Plasmodium falciparum (PfACP) in its holo form is found to exist in two conformational states in solution. Unique 3D solution structures of holo-PfACP have been determined for both equilibrium conformations, using high-resolution NMR methods. Twenty high-resolution solution structures for each of the two forms of holo-PfACP have been determined on the basis of 1226 and 1218 unambiguously assigned NOEs (including NOEs between 4 '-phosphopantetheine prosthetic group (4 '-PP) and protein), 55 backbone dihedral angles and 26 hydrogen bonds. The atomic rmsd values of the determined structures of two equilibrium forms, about the mean coordinates of the backbone and heavy atoms, are 0.48 +/- 0.09 and 0.92 +/- 0.10 and 0.49 +/- 0.08 and 0.97 +/- 0.11 angstrom, respectively. The interaction of 4 '-PP with the polypeptide backbone is reported here for the first time for any of the ACPs. The structures of holo-PfACP consist of three well-defined helices that are tightly packed. The structured regions of the molecule are stabilized by extensive hydrophobic interactions. The difference between the two forms arises from a reorientation of the 4 '-PP group. The enthalpy difference between the two forms, although small, implies that a conformational switch is essential for the activation of holo-ACP. Sequence and structures of holo-PfACP have been compared with those of the ACPs from type I and type II fatty acid biosynthesis pathways (FAS), in particular with the ACP from rat and the butyryl-ACP from E. coli. The PfACP structure, thus determined has several novel features hitherto not seen in other ACPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titration calorimetry measurements of the binding of phenyl-alpha (alpha PhOGlu), 3-methoxy (3MeOGlu), fluorodeoxy and deoxy derivatives of alpha-D-glucopyranose (Glu) to concanavalin A (conA), pea lectin and lentil lectin were performed at approx. 10 and 25 degrees C in 0.01 M dimethylglutaric acid/NaOH buffer, pH 6.9, containing 0.15 M NaCl and Mn2+ and Ca2+ ions. Apparently the 3-deoxy, 4-deoxy and 6-deoxy as well as the 4-fluorodeoxy and 6-fluorodeoxy derivatives of Glu do not bind to the lectins because no heat release was observed on the addition of aliquots of solutions of these derivatives to the lectin solutions. The binding enthalpies, delta H0b, and entropies, delta S0b, determined from the measurements were compared with the same thermodynamic binding parameters for Glu, D-mannopyranoside and methyl-alpha- D-glucopyranoside (alpha MeOGlu). The binding reactions are enthalpically driven with little change in the heat capacity on binding, and exhibit enthalpy-entropy compensation. Differences between the thermodynamic binding parameters can be rationalized in terms of the interactions apparent in the known crystal structures of the methyl-alpha-D-mannopyranoside-conA [Derewenda, Yariv, Helliwell, Kalb (Gilboa), Dodson, Papiz, Wan and Campbell (1989) EMBO J. 8, 2189-2193] and pea lectin-trimanno-pyranoside [Rini, Hardman, Einspahr, Suddath and Carber (1993) J. Biol. Chem. 268, 10126-10132] complexes. Increases in the entropy change on binding are observed for alpha MeOGlu binding to pea and lentil lectin, for alpha PhOGlu binding to conA and pea lectin, and for 3MeOGlu binding to pea lectin relative to the entropy change for Glu binding, and imply that the phenoxy and methoxy substituents provide additional hydrophobic interactions in the complex. Increases in the binding enthalpy relative to that of Glu are observed for deoxy and fluoro derivatives in the C-1 and C-2 positions and imply that these substituents weaken the interaction with the surrounding water, thereby strengthening the interaction with the binding site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been increasing interest on various properties and applications of electronically conducting polymers. Polyethylenedioxythiophene (PEDOT) is an interesting polymer of this type as it exhibits very high ionic conductivity. In the present study, PEDOT has been electrochemically deposited on stainless steel (SS) substrate for supercapacitor studies. PEDOT/SS electrodes prepared in 0.1M H2SO4 in presence of a surfactant, sodium dodecylsulphate (SDS), have been found to yield higher specific capacitance (SC) than the electrodes prepared from neutral aqueous electrolyte. The effects of concentration of H(2)SO4(,) concentration of SDS, potential of deposition, and nature of supporting electrolytes used for capacitor studies on SC of the PEDOT/SS electrodes have been studied. SC values as high as 250 F/g in 1M oxalic acid have been obtained during the initial stages of cycling. However, there is a rapid decrease in SC on repeated charge-discharge cycling. Spectroscopic data reflect structural changes in PEDOT on extended cycling. (C) 2007 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete amino acid sequence of winged bean basic agglutinin (WBA I) was obtained by a combination of manual and gas-phase sequencing methods. Peptide fragments for sequence analyses were obtained by enzymatic cleavages using trypsin and Staphylococcus aureus V8 endoproteinase and by chemical cleavages using iodosobenzoic acid, hydroxylamine, and formic acid. COOH-terminal sequence analysis of WBA I and other peptides was performed using carboxypeptidase Y. The primary structure of WBA I was homologous to those of other legume lectins and more so to Erythrina corallodendron. Interestingly, the sequence shows remarkable identities in the regions involved in the association of the two monomers of E. corallodendron lectin. Other conserved regions are the double metal-binding site and residues contributing to the formation of the hydrophobic cavity and the carbohydrate-binding site. Chemical modification studies both in the presence and absence of N-acetylgalactosamine together with sequence analyses of tryptophan-containing tryptic peptides demonstrate that tryptophan 133 is involved in the binding of carbohydrate ligands by the lectin. The location of tryptophan 133 at the active center of WBA I for the first time subserves to explain a role for one of the most conserved residues in legume lectins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of binding of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-colcemid (NBD-colcemid), an environment-sensitive fluorescent analogue of colchicine, to tubulin was tested. This article reports the first fluorometric study where two types of binding site of colchincine analogue on tubulin were detected. Binding of NBD-colcemid to one of these sites equilibrates slsowly. NBD-colcemid competes with colchicine for this site. Binding of NBD-colcemid to this site also causes inhibition of tubulin self-assembly. In contrast, NBD-colcemid binding to the other site is characterised by rapid equilibration and lack of competition with colchicine. Nevertheless, binding to this site is highly specific for the cholchicine nucleus, as alkyl-NBD analogues have no significant binding activity. Fast-reaction-kinetic studies gave 1.76 × 105 M–1 s–1 for the association and 0.79 s–1 for the dissociation rate constants for the binding of NBD-colcemid to the fast site of tubulin. The association rate constants for the two phases of the slow site are 0.016 × 10–4 M–1 s–1 and 3.5 × 10–4 M–1 respectively. These two sites may be related to the two sites of colchicine reported earlier, with binding characteristics altered by the increased hydrophobic nature of NBD-colcemid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding of Artocarpus integrifolia lectin (jacalin) to 4-methylumbelliferyl (Meumb)-glycosides, Gal alpha Meumb, Gal beta Meumb, GalNAc alpha Meumb, GalNAc beta-Meumb, and Gal beta 3GalNAc beta Meumb was examined by extrinsic fluorescence quenching titration and stopped flow spectrofluorimetry. The binding was characterized by 100% quenching of fluorescence of Meumb-glycosides. Their association constants range from 2.0 x 10(4) to 1.58 x 10(6) M-1 at 15 degrees C. Entropic contribution is the major stabilizing force for avid binding of Meumb-glycosides indicating the existence of a hydrophobic site that is complementary to their methylumbelliferyl group. The second order association rate constants for interaction of these sugars with lectin at 15 degrees C vary from 8.8 x 10(5) to 3.24 x 10(6) M-1 S-1, at pH 7.2. The first order dissociation rate constants range from 2.30 to 43.0 S-1 at 15 degrees C. Despite the differences in their association rate constants, the overall values of association constants for these saccharides are determined by their dissociation rate constants. The second order rate constant for the association of Meumb-glycosides follows a pattern consistent with the magnitude of the activation energies involved therin. Activation parameters for association of all ligands illustrate that the origin of the barrier between binding of jacalin to Meumb-glycosides is entropic, and the enthalpic contribution is small. A correlation between these parameters and the structure of the ligands on the association rates underscores the importance of steric factors in determining protein saccharide recognitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monochloroacetates of lanthanum, praseodymium and neodymium of the composition M(ClCH2COO)3·2H2O have been prepared and characterised. The compounds behave as non-electrolytes in dimethylformamide. The infrared spectra are consistent with bidentate coordination of the carboxylate group and show the presence of two types of water molecules, coordinated, and free. With six oxygen atoms from the three acetato groups and one from the water bonded to the metal, a coordination number of seven has been assigned to the rare earths in these compounds. On pyrolysis, the chloroacetates lose water at ~130 °C and yield the oxychlorides at ~500 °C. The X-ray powder patterns of the chloroacetates have been indexed for the monoclinic system, with four molecules per unit cell.