903 resultados para Human genome - Theses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propionibacterium acnes is an anaerobic Gram-positive bacterium that has been linked to a wide range of opportunistic human infections and conditions, most notably acne vulgaris (I. Kurokawa et al., Exp. Dermatol. 18:821-832, 2009). We now present the whole-genome sequences of three P. acnes strains from the type IA(2) cluster which were recovered from ophthalmic infections (A. McDowell et al., Microbiology 157:1990-2003, 2011).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We performed a genome-wide association study (GWAS) to identify common risk variants for schizophrenia. METHODS: The discovery scan included 1606 patients and 1794 controls from Ireland, using 6,212,339 directly genotyped or imputed single nucleotide polymorphisms (SNPs). A subset of this sample (270 cases and 860 controls) was subsequently included in the Psychiatric GWAS Consortium-schizophrenia GWAS meta-analysis. RESULTS: One hundred eight SNPs were taken forward for replication in an independent sample of 13,195 cases and 31,021 control subjects. The most significant associations in discovery, corrected for genomic inflation, were (rs204999, p combined = 1.34 × 10(-9) and in combined samples (rs2523722 p combined = 2.88 × 10(-16)) mapped to the major histocompatibility complex (MHC) region. We imputed classical human leukocyte antigen (HLA) alleles at the locus; the most significant finding was with HLA-C*01:02. This association was distinct from the top SNP signal. The HLA alleles DRB1*03:01 and B*08:01 were protective, replicating a previous study. CONCLUSIONS: This study provides further support for involvement of MHC class I molecules in schizophrenia. We found evidence of association with previously reported risk alleles at the TCF4, VRK2, and ZNF804A loci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Members of the genus Cronobacter are causes of rare but severe illness in neonates and preterm infants following the ingestion of contaminated infant formula. Seven species have been described and two of the species genomes were subsequently published. In this study, we performed comparative genomics on eight strains of Cronobacter, including six that we sequenced (representing six of the seven species) and two previously published, closed genomes.

Results: We identified and characterized the features associated with the core and pan genome of the genus Cronobacter in an attempt to understand the evolution of these bacteria and the genetic content of each species. We identified 84 genomic regions that are present in two or more Cronobacter genomes, along with 45 unique genomic regions. Many potentially horizontally transferred genes, such as lysogenic prophages, were also identified. Most notable among these were several type six secretion system gene clusters, transposons that carried tellurium, copper and/or silver resistance genes, and a novel integrative conjugative element.

Conclusions: Cronobacter have diverged into two clusters, one consisting of C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. While several genetic determinants for plant-association and human virulence could be found in the core genome of Cronobacter, the four Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST) that correctly predicted the phylogroup (IA, IA, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium's evolution. The secreted/cell-associated 'virulence' factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages. © 2013 McDowell et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Approximately 5-6% of all infective episodes in NICU are of viral origin. Previous studies suggest that human parechovirus (HPeV) infection presents most commonly in term infants, as a sepsis-like syndrome in which meningoencephalitis is prominent. Our aim was to study the infection rate and associated features of HPeV.

Methods: Blood samples were taken from NICU babies greater than 48 hours old, who were being investigated for late onset sepsis. Clinical and laboratory data were collected at the time of the suspected sepsis episode. Samples were tested using universal primers and probe directed at the 5'-untranslated region of the HPeV genome by reverse transcriptase PCR. Results were confirmed by electrophoresis and DNA sequencing.

Results: HPeV was detected in 11 of 84 samples (13%). These infants had a mean (interquartile range, IQR) gestational age of 28.9 (26.9 - 30.6) weeks and mean birth weight of 1.26 (SD = 0.72) kg. The median day of presentation was 16 (IQR: 11-27). These characteristics were similar to the infants without positive viral detection. Six infants presented with respiratory signs. One infant presented with signs of meningitis. Six of the 11 episodes of HPeV infection occurred during the winter months (December - February). No HPeV positive infants had abnormal findings on their 28-day cranial ultrasound examination.

Conclusions: We found a HPeV infection rate of 13% in infants being tested for late onset sepsis. HPeV should be considered as a possible cause of sepsis-like symptoms in preterm infants.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose:The aim of this study was to determine whether mutations in mitochondrial DNA play a role in high-pressure primary open-angle glaucoma (OMIM 137760) by analyzing new data from massively parallel sequencing of mitochondrial DNA.
Methods:Glaucoma patients with high-tension primary open-angle glaucoma and ethnically matched and age-matched control subjects without glaucoma were recruited. The entire human mitochondrial genome was amplified in two overlapping fragments by long-range polymerase chain reaction and used as a template for massively parallel sequencing on an Ion Torrent Personal Genome Machine. All variants were confirmed by conventional Sanger sequencing.
Results:Whole-mitochondrial genome sequencing was performed in 32 patients with primary open-angle glaucoma from India (n = 16) and Ireland (n = 16). In 16 of the 32 patients with primary open-angle glaucoma (50% of cases), there were 22 mitochondrial DNA mutations consisting of 7 novel mutations and 8 previously reported disease-associated sequence variants. Eight of 22 (36.4%) of the mitochondrial DNA mutations were in complex I mitochondrial genes.
Conclusion:Massively parallel sequencing using the Ion Torrent Personal Genome Machine with confirmation by Sanger sequencing detected a pathogenic mitochondrial DNA mutation in 50% of the primary open-angle glaucoma cohort. Our findings support the emerging concept that mitochondrial dysfunction results in the development of glaucoma and, more specifically, that complex I defects play a significant role in primary open-angle glaucoma pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated 1/42,000, 1/43,700 and 1/49,500 SNPs explained 1/421%, 1/424% and 1/429% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/I 2-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of,300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marginal zone B-cell lymphomas (MZLs) have been divided into 3 distinct subtypes (extranodal MZLs of mucosa-associated lymphoid tissue [MALT] type, nodal MZLs, and splenic MZLs). Nevertheless, the relationship between the subtypes is still unclear. We performed a comprehensive analysis of genomic DNA copy number changes in a very large series of MZL cases with the aim of addressing this question. Samples from 218 MZL patients (25 nodal, 57 MALT, 134 splenic, and 2 not better specified MZLs) were analyzed with the Affymetrix Human Mapping 250K SNP arrays, and the data combined with matched gene expression in 33 of 218 cases. MALT lymphoma presented significantly more frequently gains at 3p, 6p, 18p, and del(6q23) (TNFAIP3/A20), whereas splenic MZLs was associated with del(7q31), del(8p). Nodal MZLs did not show statistically significant differences compared with MALT lymphoma while lacking the splenic MZLs-related 7q losses. Gains of 3q and 18q were common to all 3 subtypes. del(8p) was often present together with del(17p) (TP53). Although del(17p) did not determine a worse outcome and del(8p) was only of borderline significance, the presence of both deletions had a highly significant negative impact on the outcome of splenic MZLs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV(B05)) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV(B05)EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP(+) cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies.

IMPORTANCE

Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in animal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary human cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.