978 resultados para Horizontal wells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and dynamics of potential vorticity (PV) anomalies generated by convective storms is investigated both theoretically and in a numerical model case study. Linear theory suggests that if the storm-induced heating is on a sufficiently small scale (relative to the Rossby radius of deformation), and the environment contains moderate vertical wind shear (of order 1 m s(-1) km(-1)), then the dominant mode of a diabatically generated PV anomaly is a horizontally oriented dipole. The horizontal dipoles are typically of O(10 PVU), compared with the O(1 PVU) vertical dipoles that have been studied extensively throughout the literature. Furthermore, the horizontal PV dipoles are realized almost entirely as relative vorticity anomalies (on a time-scale of the order of tens of minutes after the heating has been turned on). The analysis of horizontal PV dipoles offers a new perspective on the vorticity dynamics of individual convective cells, implying that moist processes play a role in the maintenance of vertical vorticity in the convective storm environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poor representation of cloud structure in a general circulation model (GCM) is widely recognised as a potential source of error in the radiation budget. Here, we develop a new way of representing both horizontal and vertical cloud structure in a radiation scheme. This combines the ‘Tripleclouds’ parametrization, which introduces inhomogeneity by using two cloudy regions in each layer as opposed to one, each with different water content values, with ‘exponential-random’ overlap, in which clouds in adjacent layers are not overlapped maximally, but according to a vertical decorrelation scale. This paper, Part I of two, aims to parametrize the two effects such that they can be used in a GCM. To achieve this, we first review a number of studies for a globally applicable value of fractional standard deviation of water content for use in Tripleclouds. We obtain a value of 0.75 ± 0.18 from a variety of different types of observations, with no apparent dependence on cloud type or gridbox size. Then, through a second short review, we create a parametrization of decorrelation scale for use in exponential-random overlap, which varies the scale linearly with latitude from 2.9 km at the Equator to 0.4 km at the poles. When applied to radar data, both components are found to have radiative impacts capable of offsetting biases caused by cloud misrepresentation. Part II of this paper implements Tripleclouds and exponential-random overlap into a radiation code and examines both their individual and combined impacts on the global radiation budget using re-analysis data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliably representing both horizontal cloud inhomogeneity and vertical cloud overlap is fundamentally important for the radiation budget of a general circulation model. Here, we build on the work of Part One of this two-part paper by applying a pair of parameterisations that account for horizontal inhomogeneity and vertical overlap to global re-analysis data. These are applied both together and separately in an attempt to quantify the effects of poor representation of the two components on radiation budget. Horizontal inhomogeneity is accounted for using the “Tripleclouds” scheme, which uses two regions of cloud in each layer of a gridbox as opposed to one; vertical overlap is accounted for using “exponential-random” overlap, which aligns vertically continuous cloud according to a decorrelation height. These are applied to a sample of scenes from a year of ERA-40 data. The largest radiative effect of horizontal inhomogeneity is found to be in areas of marine stratocumulus; the effect of vertical overlap is found to be fairly uniform, but with larger individual short-wave and long-wave effects in areas of deep, tropical convection. The combined effect of the two parameterisations is found to reduce the magnitude of the net top-of-atmosphere cloud radiative forcing (CRF) by 2.25 W m−2, with shifts of up to 10 W m−2 in areas of marine stratocumulus. The effects of the uncertainty in our parameterisations on radiation budget is also investigated. It is found that the uncertainty in the impact of horizontal inhomogeneity is of order ±60%, while the uncertainty in the impact of vertical overlap is much smaller. This suggests an insensitivity of the radiation budget to the exact nature of the global decorrelation height distribution derived in Part One.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from both experimental measurements and 3D numerical simulations of Ground Source Heat Pump systems (GSHP) at a UK climate are presented. Experimental measurements of a horizontal-coupled slinky GSHP were undertaken in Talbot Cottage at Drayton St Leonard site, Oxfordshire, UK. The measured thermophysical properties of in situ soil were used in the CFD model. The thermal performance of slinky heat exchangers for the horizontal-coupled GSHP system for different coil diameters and slinky interval distances was investigated using a validated 3D model. Results from a two month period of monitoring the performance of the GSHP system showed that the COP decreased with the running time. The average COP of the horizontal-coupled GSHP was 2.5. The numerical prediction showed that there was no significant difference in the specific heat extraction of the slinky heat exchanger at different coil diameters. However, the larger the diameter of coil, the higher the heat extraction per meter length of soil. The specific heat extraction also increased, but the heat extraction per meter length of soil decreased with the increase of coil central interval distance.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: