634 resultados para Heteroclinic Orbits


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of Starlette, Stella, and AJI-SAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the Z component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the Z geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended.This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking,is very important and needs to be implemented in the SLR data analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Whole Atmosphere Community Climate Model (WACCM) is utilised to study the daily ozone cycle and underlying photochemical and dynamical processes. The analysis is focused on the daily ozone cycle in the middle stratosphere at 5 hPa where satellite-based trend estimates of stratospheric ozone are most biased by diurnal sampling effects and drifting satellite orbits. The simulated ozone cycle shows a minimum after sunrise and a maximum in the late afternoon. Further, a seasonal variation of the daily ozone cycle in the stratosphere was found. Depending on season and latitude, the peak-to-valley difference of the daily ozone cycle varies mostly between 3 and 5% (0.4 ppmv) with respect to the midnight ozone volume mixing ratio. The maximal variation of 15% (0.8 ppmv) is found at the polar circle in summer. The global pattern of the strength of the daily ozone cycle is mainly governed by the solar zenith angle and the sunshine duration. In addition, we find synoptic-scale variations in the strength of the daily ozone cycle. These variations are often anti-correlated to regional temperature anomalies and are due to the temperature dependence of the rate coefficients k2 and k3 of the Chapman cycle reactions. Further, the NOx catalytic cycle counteracts the accumulation of ozone during daytime and leads to an anti-correlation between anomalies in NOx and the strength of the daily ozone cycle. Similarly, ozone recombines with atomic oxygen which leads to an anti-correlation between anomalies in ozone abundance and the strength of the daily ozone cycle. At higher latitudes, an increase of the westerly (easterly) wind cause a decrease (increase) in the sunshine duration of an air parcel leading to a weaker (stronger) daily ozone cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement association and initial orbit determination is a fundamental task when building up a database of space objects. This paper proposes an efficient and robust method to determine the orbit using the available information of two tracklets, i.e. their line-of-sights and their derivatives. The approach works with a boundary-value formulation to represent hypothesized orbital states and uses an optimization scheme to find the best fitting orbits. The method is assessed and compared to an initial-value formulation using a measurement set taken by the Zimmerwald Small Aperture Robotic Telescope of the Astronomical Institute at the University of Bern. False associations of closely spaced objects on similar orbits cannot be completely eliminated due to the short duration of the measurement arcs. However, the presented approach uses the available information optimally and the overall association performance and robustness is very promising. The boundary-value optimization takes only around 2% of computational time when compared to optimization approaches using an initial-value formulation. The full potential of the method in terms of run-time is additionally illustrated by comparing it to other published association methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a short-arc optical observation with estimated angle-rates, the admissible region is a compact region in the range / range-rate space defined such that all likely and relevant orbits are contained within it. An alternative boundary value problem formulation has recently been proposed where range / range hypotheses are generated with two angle measurements from two tracks as input. In this paper, angle-rate information is reintroduced as a means to eliminate hypotheses by bounding their constants of motion before a more computationally costly Lambert solver or differential correction algorithm is run.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well- designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing, etc.) until the final products can be offered to the users and with low technological effort and risk. The SBSS system concept takes the ESA SST System Requirements into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirements for detection and characterisation of small-sizedLEO debris are considered. The paper presents details of the system concept, candidate micro-satellite platforms, the instrument design and the operational modes. Note that the detailed results of performance simulations for space debris coverage and cataloguing accuracy are presented in a separate paper “Capability of a Space-based Space Surveillance System to Detect and Track Objects in GEO, MEO and LEO Orbits” by J. Silha (AIUB) et al., IAC-14, A6, 1.1x25640.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) showed that the geocenter z -component estimated from observations of global navigation satellite systems (GNSS) is strongly correlated to a particular parameter of the solar radiation pressure (SRP) model developed by Beutler et al. (Manuscr Geod 19:367–386, 1994). They analyzed the forces caused by SRP and the impact on the satellites’ orbits. The authors achieved their results using perturbation theory and celestial mechanics. Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026, 2013) also deal with the geocenter determination with GNSS. The authors carried out a collinearity diagnosis of the associated parameter estimation problem. They conclude “without much exaggerating that current GNSS are insensitive to any component of geocenter motion”. They explain this inability by the high degree of collinearity of the geocenter coordinates mainly with satellite clock corrections. Based on these results and additional experiments, they state that the conclusions drawn by Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) are questionable. We do not agree with these conclusions and present our arguments in this article. In the first part, we review and highlight the main characteristics of the studies performed by Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) to show that the experiments are quite different from those performed by Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026,2013) . In the second part, we show that normal equation (NEQ) systems are regular when estimating geocenter coordinates, implying that the covariance matrices associated with the NEQ systems may be used to assess the sensitivity to geocenter coordinates in a standard way. The sensitivity of GNSS to the components of the geocenter is discussed. Finally, we comment on the arguments raised by Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026, 2013) against the results of Meindl et al. (Adv Space Res 51(7):1047–1064, 2013).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first Earth explorer core mission of the European Space Agency. It was launched on March 17, 2009 into a Sun-synchronous dusk-dawn orbit and re-entered into the Earth’s atmosphere on November 11, 2013. The satellite altitude was between 255 and 225 km for the measurement phases. The European GOCE Gravity consortium is responsible for the Level 1b to Level 2 data processing in the frame of the GOCE High-level processing facility (HPF). The Precise Science Orbit (PSO) is one Level 2 product, which was produced under the responsibility of the Astronomical Institute of the University of Bern within the HPF. This PSO product has been continuously delivered during the entire mission. Regular checks guaranteed a high consistency and quality of the orbits. A correlation between solar activity, GPS data availability and quality of the orbits was found. The accuracy of the kinematic orbit primarily suffers from this. Improvements in modeling the range corrections at the retro-reflector array for the SLR measurements were made and implemented in the independent SLR validation for the GOCE PSO products. The satellite laser ranging (SLR) validation finally states an orbit accuracy of 2.42 cm for the kinematic and 1.84 cm for the reduced-dynamic orbits over the entire mission. The common-mode accelerations from the GOCE gradiometer were not used for the official PSO product, but in addition to the operational HPF work a study was performed to investigate to which extent common-mode accelerations improve the reduced-dynamic orbit determination results. The accelerometer data may be used to derive realistic constraints for the empirical accelerations estimated for the reduced-dynamic orbit determination, which already improves the orbit quality. On top of that the accelerometer data may further improve the orbit quality if realistic constraints and state-of-the-art background models such as gravity field and ocean tide models are used for the reduced-dynamic orbit determination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We process 20 years of SLR observations to GPS and GLONASS satellites using the reprocessed 3-day and 1-day microwave orbits provided by the Center for Orbit Determination in Europe (CODE) for the period 1994-2013. We study the dependency of the SLR residuals on the type, size, and a number of corner cubes in satellite laser reflector arrays (LRA). We show that the mean SLR residuals and the RMS of residuals depend on the coating of LRA and the block or type of GNSS satellites. The SLR mean residuals are also a function of the equipment used at SLR stations including detector types and detecting modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gravity field and steady-state Ocean Circulation Explorer (GOCE), ESA’s first Earth Explorer core mission, was launched on March 17, 2009 into a sunsynchronous dusk-dawn orbit and eventually re-entered into the Earth’s atmosphere on November 11, 2013. A precise science orbit (PSO) product was provided by the GOCE High-level Processing Facility (HPF) from the GPS high-low Satellite-to-Satellite Tracking (hl-SST) data from the beginning until the very last days of the mission. We recapitulate the PSO procedure and refer to the results achieved until the official end of the GOCE mission on October 21, 2013, where independent validations with Satellite Laser ranging (SLR) measurements confirmed a high quality of the PSO product of about 2 cm 1-D RMS. We then focus on the period after the official end of the mission, where orbits could still be determined thanks to the continuously running GPS receivers delivering high quality data until a few hours before the re-entry into the Earth’s atmosphere. We address the challenges encountered for orbit determination during these last days and report on adaptions in the PSO procedure to also obtain good orbit results at the unprecedented low orbital altitudes below 224 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The International GNSS Service (IGS) issues four sets of so-called ultra-rapid products per day, which are based on the contributions of the IGS Analysis Centers. The traditional (“old”) ultra-rapid orbit and earth rotation parameters (ERP) solution of the Center for Orbit Determination in Europe (CODE) was based on the output of three consecutive 3-day long-arc rapid solutions. Information from the IERS Bulletin A was required to generate the predicted part of the old CODE ultra-rapid product. The current (“new”) product, activated in November 2013, is based on the output of exactly one multi-day solution. A priori information from the IERS Bulletin A is no longer required for generating and predicting the orbits and ERPs. This article discusses the transition from the old to the new CODE ultra-rapid orbit and ERP products and the associated improvement in reliability and performance. All solutions used in this article were generated with the development version of the Bernese GNSS Software. The package was slightly extended to meet the needs of the new CODE ultra-rapid generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009–2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft’s solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which substantially reduces the spurious signals in the geocenter coordinate z (by about a factor of 2–6), reduces the orbit misclosures at the day boundaries by about 10 %, slightly improves the consistency of the estimated ERPs with those of the IERS 08 C04 Earth rotation series, and substantially reduces the systematics in the SLR validation of the GNSS orbits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gravity field parameters are usually determined from observations of the GRACE satellite mission together with arc-specific parameters in a generalized orbit determination process. When separating the estimation of gravity field parameters from the determination of the satellites’ orbits, correlations between orbit parameters and gravity field coefficients are ignored and the latter parameters are biased towards the a priori force model. We are thus confronted with a kind of hidden regularization. To decipher the underlying mechanisms, the Celestial Mechanics Approach is complemented by tools to modify the impact of the pseudo-stochastic arc-specific parameters on the normal equations level and to efficiently generate ensembles of solutions. By introducing a time variable a priori model and solving for hourly pseudo-stochastic accelerations, a significant reduction of noisy striping in the monthly solutions can be achieved. Setting up more frequent pseudo-stochastic parameters results in a further reduction of the noise, but also in a notable damping of the observed geophysical signals. To quantify the effect of the a priori model on the monthly solutions, the process of fixing the orbit parameters is replaced by an equivalent introduction of special pseudo-observations, i.e., by explicit regularization. The contribution of the thereby introduced a priori information is determined by a contribution analysis. The presented mechanism is valid universally. It may be used to separate any subset of parameters by pseudo-observations of a special design and to quantify the damage imposed on the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite laser ranging (SLR) to the satellites of the global navigation satellite systems (GNSS) provides substantial and valuable information about the accuracy and quality of GNSS orbits and allows for the SLR-GNSS co-location in space. In the framework of the NAVSTAR-SLR experiment two GPS satellites of Block-IIA were equipped with laser retroreflector arrays (LRAs), whereas all satellites of the GLONASS system are equipped with LRAs in an operational mode. We summarize the outcome of the NAVSTAR-SLR experiment by processing 20 years of SLR observations to GPS and 12 years of SLR observations to GLONASS satellites using the reprocessed microwave orbits provided by the center for orbit determination in Europe (CODE). The dependency of the SLR residuals on the size, shape, and number of corner cubes in LRAs is studied. We show that the mean SLR residuals and the RMS of residuals depend on the coating of the LRAs and the block or type of GNSS satellites. The SLR mean residuals are also a function of the equipment used at SLR stations including the single-photon and multi-photon detection modes. We also show that the SLR observations to GNSS satellites are important to validate GNSS orbits and to assess deficiencies in the solar radiation pressure models. We found that the satellite signature effect, which is defined as a spread of optical pulse signals due to reflection from multiple reflectors, causes the variations of mean SLR residuals of up to 15 mm between the observations at nadir angles of 0∘ and 14∘. in case of multi-photon SLR stations. For single-photon SLR stations this effect does not exceed 1 mm. When using the new empirical CODE orbit model (ECOM), the SLR mean residual falls into the range 0.1–1.8 mm for high-performing single-photon SLR stations observing GLONASS-M satellites with uncoated corner cubes. For best-performing multi-photon stations the mean SLR residuals are between −12.2 and −25.6 mm due to the satellite signature effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the number of space debris is increasing in the geostationary ring, it becomes mandatory for any satellite operator to avoid any collisions. Space debris in geosynchronous orbits may be observed with optical telescopes. Other than radar, that requires very large dishes and transmission powers for sensing high-altitude objects, optical observations do not depend on active illumination from ground and may be performed with notably smaller apertures. The detection size of an object depends on the aperture of the telescope, sky background and exposure time. With a telescope of 50 cm aperture, objects down to approximately 50 cm may be observed. This size is regarded as a threshold for the identification of hazardous objects and the prevention of potentially catastrophic collisions in geostationary orbits. In collaboration with the Astronomical Institute of the University of Bern (AIUB), the German Space Operations Center (GSOC) is building a small aperture telescope to demonstrate the feasibility of optical surveillance of the geostationary ring. The telescope will be located in the southern hemisphere and complement an existing telescope in the northern hemisphere already operated by AIUB. These two telescopes provide an optimum coverage of European GEO satellites and enable a continuous monitoring independent of seasonal limitations. The telescope will be operated completely automatically. The automated operations should be demonstrated covering the full range of activities including scheduling of observations, telescope and camera control as well as data processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A man wearing no protective helmet was struck by a motor vehicle while riding a bicycle. He was loaded on his left side, and the impact point of his head was his occiput on the car roof girder. He was immediately transported to the general hospital, where he passed away. Postmortem examination using multi-slice computed tomography (MSCT) revealed an extensively comminuted fracture of the posterior part and the base of the skull. Observed were deep direct and contrecoup brain bruises, with the independent fractures of the roof of the both orbits. Massive subdural and subarachnoidal hemorrhage with cerebral edema and shifting of the mid-line towards left side were also detected. MSCT and autopsy results were compared and the body injuries were correlated to vehicle damages. In conclusion, postmortem imaging is a good forensic visualization tool with great potential for documentation and examination of body injuries and pathology.