900 resultados para Hard combinatorial scheduling
Resumo:
This paper aims to propose a hybrid meta-heuristics for the Heterogeneous Fleet Vehicle Routing Problem (HVRP), which is a combinatorial optimization problem NP-hard, and is characterized by the use of a limited fleet consists of different vehicles with different capacities. The hybrid method developed makes use of a memetic algorithm associated with the component optimizer Vocabulary Building. The resulting hybrid meta-heuristic was implemented in the programming language C + + and computational experiments generated good results in relation to meta-heuristic applied in isolation, proving the efficiency of the proposed method.
Resumo:
This paper presents metaheuristic strategies based on the framework of evolutionary algorithms (Genetic and Memetic) with the addition of Technical Vocabulary Building for solving the Problem of Optimizing the Use of Multiple Mobile Units Recovery of Oil (MRO units). Because it is an NP-hard problem, a mathematical model is formulated for the problem, allowing the construction of test instances that are used to validate the evolutionary metaheuristics developed
Resumo:
This work aims to "build" rostering urban bus crews to minimize the cost of overtime. For this purpose a mathematical model was developed based on case study in an urban transport company in the metropolitan region of Natal. This problem is usually known in the literature as the Crew Scheduling Problem (CSP) and classified as NP-hard. The mathematical programming takes into account constraints such as: completion of all trips, daily and maximum allowable range of home and / or food. We used the Xpress-MP software to implement and validate the proposed model. For the tested instances the application of the model allowed a reduction in overtime from 38% to 84%
Resumo:
The Combinatorial Optimization is a basic area to companies who look for competitive advantages in the diverse productive sectors and the Assimetric Travelling Salesman Problem, which one classifies as one of the most important problems of this area, for being a problem of the NP-hard class and for possessing diverse practical applications, has increased interest of researchers in the development of metaheuristics each more efficient to assist in its resolution, as it is the case of Memetic Algorithms, which is a evolutionary algorithms that it is used of the genetic operation in combination with a local search procedure. This work explores the technique of Viral Infection in one Memetic Algorithms where the infection substitutes the mutation operator for obtaining a fast evolution or extinguishing of species (KANOH et al, 1996) providing a form of acceleration and improvement of the solution . For this it developed four variants of Viral Infection applied in the Memetic Algorithms for resolution of the Assimetric Travelling Salesman Problem where the agent and the virus pass for a symbiosis process which favored the attainment of a hybrid evolutionary algorithms and computational viable
Resumo:
This paper describes the development and solution of binary integer formulations for production scheduling problems in market-driven foundries. This industrial sector is comprised of small and mid-sized companies with little or no automation, working with diversified production, involving several different metal alloy specifications in small tailor-made product lots. The characteristics and constraints involved in a typical production environment at these industries challenge the formulation of mathematical programming models that can be computationally solved when considering real applications. However, despite the interest on the part of these industries in counting on effective methods for production scheduling, there are few studies available on the subject. The computational tests prove the robustness and feasibility of proposed models in situations analogous to those found in production scheduling at the analyzed industrial sector. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a combined pool/bilateral short term hydrothermal scheduling model (PDC) for the context of the day-ahead energy markets. Some innovative aspects are introduced in the model, such as: i) the hydraulic generation is optimized through the opportunity cost function proposed; ii) there is no decoupling between physical and commercial dispatches, as is the case today in Brazil; iii) interrelationships between pool and bilateral markets are represented through a single optimization problem; iv) risk exposures related to future deficits are intrinsically mitigated; v) the model calculates spot prices in an hourly basis and the results show a coherent correlation between hydrological conditions and calculated prices. The proposed PDC model is solved by a primal-dual interior point method and is evaluated by simulations involving a test system. The results are focused on sensitivity analyses involving the parameters of the model, in such a way to emphasize its main modeling aspects. The results show that the proposed PDC provides a conceptual means for short term price formation for hydrothermal systems.
Resumo:
Assigning cells to switches in a cellular mobile network is known as an NP-hard optimization problem. This means that the alternative for the solution of this type of problem is the use of heuristic methods, because they allow the discovery of a good solution in a very satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach and provide good solutions for large scale problems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.
Resumo:
This paper presents an interior point method for the long-term generation scheduling of large-scale hydrothermal systems. The problem is formulated as a nonlinear programming one due to the nonlinear representation of hydropower production and thermal fuel cost functions. Sparsity exploitation techniques and an heuristic procedure for computing the interior point method search directions have been developed. Numerical tests in case studies with systems of different dimensions and inflow scenarios have been carried out in order to evaluate the proposed method. Three systems were tested, with the largest being the Brazilian hydropower system with 74 hydro plants distributed in several cascades. Results show that the proposed method is an efficient and robust tool for solving the long-term generation scheduling problem.
Resumo:
This thesis proposes an architecture of a new multiagent system framework for hybridization of metaheuristics inspired on the general Particle Swarm Optimization framework (PSO). The main contribution is to propose an effective approach to solve hard combinatory optimization problems. The choice of PSO as inspiration was given because it is inherently multiagent, allowing explore the features of multiagent systems, such as learning and cooperation techniques. In the proposed architecture, particles are autonomous agents with memory and methods for learning and making decisions, using search strategies to move in the solution space. The concepts of position and velocity originally defined in PSO are redefined for this approach. The proposed architecture was applied to the Traveling Salesman Problem and to the Quadratic Assignment Problem, and computational experiments were performed for testing its effectiveness. The experimental results were promising, with satisfactory performance, whereas the potential of the proposed architecture has not been fully explored. For further researches, the proposed approach will be also applied to multiobjective combinatorial optimization problems, which are closer to real-world problems. In the context of applied research, we intend to work with both students at the undergraduate level and a technical level in the implementation of the proposed architecture in real-world problems
Resumo:
This work approaches the Scheduling Workover Rigs Problem (SWRP) to maintain the wells of an oil field, although difficult to resolve, is extremely important economical, technical and environmental. A mathematical formulation of this problem is presented, where an algorithmic approach was developed. The problem can be considered to find the best scheduling service to the wells by the workover rigs, taking into account the minimization of the composition related to the costs of the workover rigs and the total loss of oil suffered by the wells. This problem is similar to the Vehicle Routing Problem (VRP), which is classified as belonging to the NP-hard class. The goal of this research is to develop an algorithmic approach to solve the SWRP, using the fundamentals of metaheuristics like Memetic Algorithm and GRASP. Instances are generated for the tests to analyze the computational performance of the approaches mentioned above, using data that are close to reality. Thereafter, is performed a comparison of performance and quality of the results obtained by each one of techniques used
Uma análise experimental de algoritmos exatos aplicados ao problema da árvore geradora multiobjetivo
Resumo:
The Multiobjective Spanning Tree Problem is NP-hard and models applications in several areas. This research presents an experimental analysis of different strategies used in the literature to develop exact algorithms to solve the problem. Initially, the algorithms are classified according to the approaches used to solve the problem. Features of two or more approaches can be found in some of those algorithms. The approaches investigated here are: the two-stage method, branch-and-bound, k-best and the preference-based approach. The main contribution of this research lies in the fact that no research was presented to date reporting a systematic experimental analysis of exact algorithms for the Multiobjective Spanning Tree Problem. Therefore, this work can be a basis for other research that deal with the same problem. The computational experiments compare the performance of algorithms regarding processing time, efficiency based on the number of objectives and number of solutions found in a controlled time interval. The analysis of the algorithms was performed for known instances of the problem, as well as instances obtained from a generator commonly used in the literature
Resumo:
Multi-objective combinatorial optimization problems have peculiar characteristics that require optimization methods to adapt for this context. Since many of these problems are NP-Hard, the use of metaheuristics has grown over the last years. Particularly, many different approaches using Ant Colony Optimization (ACO) have been proposed. In this work, an ACO is proposed for the Multi-objective Shortest Path Problem, and is compared to two other optimizers found in the literature. A set of 18 instances from two distinct types of graphs are used, as well as a specific multiobjective performance assessment methodology. Initial experiments showed that the proposed algorithm is able to generate better approximation sets than the other optimizers for all instances. In the second part of this work, an experimental analysis is conducted, using several different multiobjective ACO proposals recently published and the same instances used in the first part. Results show each type of instance benefits a particular type of instance benefits a particular algorithmic approach. A new metaphor for the development of multiobjective ACOs is, then, proposed. Usually, ants share the same characteristics and only few works address multi-species approaches. This works proposes an approach where multi-species ants compete for food resources. Each specie has its own search strategy and different species do not access pheromone information of each other. As in nature, the successful ant populations are allowed to grow, whereas unsuccessful ones shrink. The approach introduced here shows to be able to inherit the behavior of strategies that are successful for different types of problems. Results of computational experiments are reported and show that the proposed approach is able to produce significantly better approximation sets than other methods