968 resultados para HTLV-I infection
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Feeding strategies that reduce feed and promote compensatory growth could be an interesting tool to reduce costs in the fish production. However, fish health must be monitored to evaluate if their physiological response to adverse conditions, such as parasite infection, does not become compromised. A 12-wk growth trial was conducted to determine the physiological responses of pacu, Piaractus mesopotamicus, that were subjected to different fasting/refeeding cycles and infected with the Dolops carvalhoi. The schemes were: (i) control group fish (FD), (ii) food-restricted and controlled refeeding group (FR/Rc), and (iii) food-restricted and refeeding to satiation group (FR/Rs). After 84 d, the fish were exposed to D. carvalhoi for 30 h. The fish subjected to food restriction did not exhibit compensatory growth. Cortisol levels decreased in all groups within 30 h after infection. Glucose levels increased 6 h after the D. carvalhoi in the FR/Rs and 30 h after infection in the FD. In all of the fish groups, the hematocrit values were reduced after infection, and it was associated with a reduction in the mean corpuscular volume and erythrocytes. At 30 h after infection, the number of erythroblasts increased. The use of the feeding schemes does not indicate a failure of the pacu physiological responses.
Resumo:
The Kaposi-associated Herpesvirus (KSHV) also known as Human Herpesvirus 8 (HHV-8) is associated with the development of Kaposi’s sarcoma (KS) and others limphoprolipheratives diseases such as Primary Effusion Lymphoma (PEL) and Multicentric Castleman Disease (MCD). Even though the virus is considered lymphotropic, it is able to infect others cell types such as macrophages, dendritic cells, endothelial cells, monocytes and fibroblasts. After infection, KSHV be latent expressing essential viral genes to its maintenance in a infected cell. However, in some circumstances may occur the reactivation of lytic cycle producing new viral particles. K1 protein of KSHV interferes in the cellular signaling inducing proliferation and supporting cellular transformation. K1 is encoded by viral ORF-K1, which shows high variability between different genotypes of KSHV. So far, it is not clear whether different isoforms of K1 have specific immunobiological features. The KSHV latency is maintained under strict control by the immune system supported by an adequate antigen presentation involving Human Leucocyte Antigen (HLA) class I and II. Polymorphisms of HLA class I and II genes confer an enormous variability in molecules that recognize a large amount of antigens, but also can increase the susceptibility to autoimmune diseases. Therefore, the present study aims to genotype HLA class I (A and B) and class II (DR and DQ) from volunteers to identify haplotypes that can provide better response to K1 epitopes of different KSHV genotypes. First of all, 20 volunteers were selected to genotype HLA genes. In our results we observed prevalence of certain HLA class I haplotypes as HLAA1, HLA-A2, HLA-A24, HLA-A26, HLA-B8, HLA-B18 e HLA-B44. After the in silico analysis using BIMAS and SYFPEITHI databases, we observed high scores for epitopes from the B genotype of KSHV, indicating...(Complete abstract click electronic access below)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to experimentally evaluate infection in Gallus gallus domesticus with Neospora caninum tachyzoites of the NC-1 strain. Experimental infection was conducted in 90-day-old chickens, embryonated eggs and bioassays in dogs. In the first experiment, poults were randomly divided into four groups. Groups I and II were provided feed with coccidiostat, whereas groups III and IV received feed without coccidiostat. When the poults from groups I and III reached 90 days of age, they received a subcutaneous inoculation of N. caninum. Once the hens entered their egg-laying period, during the following 30 days, the eggs were collected, identified, weighed and placed in an incubator. On the 70th day after inoculation, all animals, including the chicks, were euthanized. Tissue samples from the adult poultry and chicks were collected for histopathology, immunohistochemistry (IHC) and PCR. Brain tissue and pectoral muscle samples from infected birds were fed to two dogs. Notably, the average weight of the group III eggs was lower than that of the group IV eggs (p <0.05). No changes consistent with infection in adult poultry or chicks were detected by histopathology or IHC; moreover, no amplified parasite DNA was detected in the birds'tissues or dogs'feces. No dog eliminated oocysts. In the second experiment, the embryonated chicken eggs were inoculated with 1 x 10(2) N. caninum tachyzoites, on the 10th day of incubation, and chicks born from these eggs were housed in boxes suitable for the species and received commercial feed and distilled water ad libitum. On the 30th day after infection (DAI), the poultry were euthanized, and their organs were processed as described in experiment I. The amplification of parasite DNA was observed in the spleen and pectoral muscles of one of the birds. The ingestion of bird tissues by dogs did not result in oocyst elimination. These results indicate that the parasite may have been eliminated by the host and that the use of tachyzoites to induce chronic disease might be a poor source for hens. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Eight reproductive rams with no prior reproductive disease were distributed into three groups of infection with T. gondii: GI, 3 rams, 2.0 x 10(5) P strain oocysts; GII, 3 rams, 1.0 x 10(6) RH strain tachyzoites; GIII, 2 control rams. Clinical parameters were measured and serological evaluations (IIF) were performed. Presence of the parasite in the semen was investigated by PCR and bioassay techniques. The rams presented clinical alterations (hyperthermia and apathy) related to toxoplasmosis in both groups infected with Toxoplasma gondii. All the inoculated rams responded to antigenic stimulus, producing antibodies against T. gondii from postinoculation day 5 onwards. In ovine groups I and II, the greatest titers observed were 1 : 4096 and 1 : 8192, respectively. In semen samples collected from these two groups, the presence of T. gondii was detected by bioassay and PCR. This coccidian was isolated (bioassay and PCR) in tissue pools (testicles, epididymis, seminal vesicle, and prostrate) from two rams infected presenting oocysts and in one presenting tachyzoites.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The gill monogene communities of Pimephales promelas (fathead minnow) in three distinct sites on converging streams were investigated from 2004 to 2006 in three different seasons. Thirty collections of P. promelas were made in southeastern Nebraska along three converging tributaries: Elk Creek (40.88534°N, 96.83366°W), West Oak Creek (40.9082°N, 96.81432°W), and Oak Creek (40.91402°N, 96.770583°W), Lancaster County, Nebraska. In all, 103 P. promelas were collected from Elk Creek, 115 from West Oak Creek, and 78 from Oak Creek and examined for gill monogenes. Among the P. promelas collected, 93.5% were infected with up to three species of Dactylogyrus, including Dactylogyrus simplex Mizelle, 1937, Dactylogyrus bychowskyi Mizelle, 1937, and Dactylogyrus pectenatus Mayes, 1977. Mean intensities at Elk Creek, West Oak Creek, and Oak Creek were 17.6, 22.8, and 25.1, and prevalences 88, 95, and 97%, respectively. At these three sites: (1) P. promelas does not share Dactylogyrus species with Semotilus atromaculatus (creek chub) or Notropis stramineus (sand shiner); (2) fish size and sex are not predictive of Dactylogyrus infection; (3) Dactylogyrus spp. vary (not always predictably) in their seasonal occurrence; (4) populations of Dactylogyrus spp. respond to environmental differences among sites; and (5) the community structure of Dactylogyrus spp. (order of abundance) is independent of environment.
Resumo:
Monitoring of the kinetics of production of serum antibodies to multiple mycobacterial antigens can be useful as a diagnostic tool for the detection of Mycobacterium bovis infection as well as for the characterization of disease progression and the efficacy of intervention strategies in several species. The humoral immune responses to multiple M. bovis antigens by white-tailed deer vaccinated with BCG orally via a lipid-formulated bait (n = 5), orally in liquid form (n = 5), and subcutaneously (n = 6) were evaluated over time after vaccination and after experimental challenge with virulent M. bovis and were compared to the responses by unvaccinated deer (n = 6). Antibody responses were evaluated by using a rapid test (RT), a multiantigen print immunoassay (MAPIA), a lipoarabinomannan enzyme-linked immunosorbent assay (LAM-ELISA), and immunoblotting to whole-cell sonicate and recombinant antigen MPB83. MAPIA and RT detected minimal to no antibody responses over those at the baseline to multiple M. bovis antigens in vaccinated white-tailed deer after challenge. This was in contrast to the presence of more readily detectable antibody responses in nonvaccinated deer with more advanced disease. The LAM-ELISA results indicated an overall decrease in the level of production of detectable antibodies against lipoarabinomannan-enriched mycobacterial antigen in vaccinated animals compared to that in nonvaccinated animals after challenge. Immunoblot data were inconsistent but did suggest the occurrence of unique antibody responses by certain vaccinated groups to Ag85 and HSP70. These findings support further research toward the improvement and potential use of antibody-based assays, such as MAPIA, RT, and LAM-ELISA, as tools for the antemortem assessment of disease progression in white-tailed deer in both experimental and field vaccine trials.
Resumo:
Surveillance and control activities related to bovine tuberculosis (TB) in free-ranging, Michigan white-tailed deer (Odocoileus virginianus) have been underway for over a decade, with significant progress. However, foci of higher TB prevalence on private lands and limited agency ability to eliminate them using broad control strategies have led to development and trial of new control strategies, such as live trapping, testing, and culling or release. Such strategies require a prompt, accurate live animal test, which has thus far been lacking. We report here the ability of seven candidate blood assays to determine the TB infection status of Michigan deer. Our aims were twofold: to characterize the accuracy of the tests using field-collected samples and to evaluate the feasibility of the tests for use in a test-and-cull strategy. Samples were collected from 760 deer obtained via five different surveys conducted between 2004 and 2007. Blood samples were subjected to one or more of the candidate blood assays and evaluated against the results of mycobacterial culture of the cranial lymph nodes. Sensitivities of the tests ranged from 46% to 68%, whereas specificities and negative predictive values were all .92%. Positive predictive values were highly variable. An exploratory analysis of associations among several host and sampling-related factors and the agreement between blood assay and culture results suggested these assays were minimally affected. This study demonstrated the capabilities and limitations of several available blood tests for Mycobacterium bovis on specimens obtained through a variety of field surveillance methods. Although these blood assays cannot replace mass culling, information on their performance may prove useful as wildlife disease managers develop innovative methods of detecting infected animals where mass culling is publicly unacceptable and cannot be used as a control strategy.
Resumo:
To determine the ability of experimentally inoculated white-tailed deer (Odocoileus virginianus) to transmit Mycobacterium bovis to naive deer through the sharing of feed, four deer were intratonsillarly inoculated with 4x105 colony-forming units of M. bovis. On a daily basis, feed not consumed by inoculated deer after approximately 8 hr was offered to four naıve deer maintained in a separate pen, where direct contact, aerosol transmission, or transmission through personnel were prevented. After 150 days, naıve deer were euthanized and examined. All naıve deer had lesions consistent with tuberculosis and M. bovis was isolated from various tissues. The most commonly affected tissues were lung, tracheobronchial lymph nodes, and mediastinal lymph nodes. This study demonstrates the potential for indirect transmission of M. bovis through the sharing of feed. Intentional or unintentional feeding of deer by wildlife or agricultural interests in regions where M. bovis infection is endemic should be avoided because both direct and indirect transmission through sharing of feed are enhanced.
Resumo:
Objective—To investigate the infection of calves with Mycobacterium bovis through oral exposure and transmission of M bovis from experimentally infected white-tailed deer to uninfected cattle through indirect contact. Animals—24 11-month-old, white-tailed deer and 28 6-month-old, crossbred calves. Procedure—In the oral exposure experiment, doses of 4.3 X 106 CFUs (high dose) or 5 X 103 CFUs (low dose) of M bovis were each administered orally to 4 calves; as positive controls, 2 calves received M bovis (1.7 X 105 CFUs) via tonsillar instillation. Calves were euthanatized and examined 133 days after exposure. Deer-to-cattle transmission was assessed in 2 phases (involving 9 uninfected calves and 12 deer each); deer were inoculated with 4 X 105 CFUs (phase I) or 7 X 105 CFUs (phase II) of M Bovis. Calves and deer exchanged pens (phase I; 90 days’ duration) or calves received uneaten feed from deer pens (phase II; 140 days’ duration) daily. At completion, animals were euthanatized and tissues were collected for bacteriologic culture and histologic examination. Results—In the low- and high-dose groups, 3 of 4 calves and 1 of 4 calves developed tuberculosis, respectively. In phases I and II, 9 of 9 calves and 4 of 9 calves developed tuberculosis, respectively. Conclusions and Clinical Relevance—Results indicated that experimentally infected deer can transmit M bovis to cattle through sharing of feed. In areas where tuberculosis is endemic in free-ranging white-tailed deer, management practices to prevent access of wildlife to feed intended for livestock should be implemented.
Resumo:
Tuberculosis due to Mycobacterium bovis affects both captive and free-ranging Cervidae in the United States. Various animal models have been developed to study tuberculosis of both humans and animals. Generally, tuberculosis is transmitted by aerosol and oral routes. Models of aerosol exposure of large animals to M. bovis are uncommon. In order to develop a reliable method of aerosol exposure of white-tailed deer (Odocoileus virginianus) to M. bovis, 12 healthy white-tailed deer, aged 8–10 mo, were infected by aerosol exposure to 2x105 to 1x106 colony forming units (CFU) (high dose, n=4) of M. bovis or 6x102 to 1.6 x 103 CFU (low dose, n=8) of M. bovis. Tuberculous lesions were more widely disseminated in deer receiving the high dose, while lesions in deer receiving the low dose were more focused on the lungs and associated lymph nodes (tracheobronchial and mediastinal). Aerosol delivery of M. bovis to white-tailed deer results in a reliable manner of experimental infection that may be useful for studies of disease pathogenesis, immune response, mycobacterial shedding, and vaccine efficacy.