961 resultados para HIF-1 transcription factor
Resumo:
Pattern recognition receptors for fungi include dectin-1 and mannose receptor, and these mediate phagocytosis, as well as production of cytokines, reactive oxygen species, and the lipid mediator leukotriene B-4 (LTB4). The influence of G protein-coupled receptor ligands such as LTB4 on fungal pattern recognition receptor expression is unknown. In this study, we investigated the role of LTB4 signaling in dectin-1 expression and responsiveness in macrophages. Genetic and pharmacologic approaches showed that LTB4 production and signaling through its high-affinity G protein-coupled receptor leukotriene B4 receptor 1 (BLT1) direct dectin-1-dependent binding, ingestion, and cytokine production both in vitro and in vivo. Impaired responses to fungal glucans correlated with lower dectin-1 expression in macrophages from leukotriene (LT)- and BLT1-deficent mice than their wildtype counterparts. LTB4 increased the expression of the transcription factor responsible for dectin-1 expression, PU.1, and PU.1 small interfering RNA abolished LTB4-enhanced dectin-1 expression. GM-CSF controls PU.1 expression, and this cytokine was decreased in LT-deficient macrophages. Addition of GM-CSF to LT-deficient cells restored expression of dectin-1 and PU.1, as well as dectin-1 responsiveness. In addition, LTB4 effects on dectin-1, PU.1, and cytokine production were blunted in GM-CSF-/- macrophages. Our results identify LTB4-BLT1 signaling as an unrecognized controller of dectin-1 transcription via GM-CSF and PU.1 that is required for fungi-protective host responses. The Journal of Immunology, 2012, 189: 906-915.
Resumo:
Background Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)2D3 (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)2D3 in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)2D3 at concentrations that can be attained in vivo. Methods Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)2D3 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)2D3 0.5nM, using RT-qPCR, western blot or immunocytochemistry. Results 1,25(OH)2D3 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)2D3 near physiological concentration. Genes up-modulated by both 1,25(OH)2D3 concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)2D3 was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)2D3 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and DPP4 in CAFs exposed to 1,25(OH)2D3 0.5nM was detected. Conclusions In breast cancer specimens a short period of 1,25(OH)2D3 exposure at near physiological concentration modestly activates the hormone transcriptional pathway. Induction of CYP24A1, CA2, DPP4, IL1RL1 expression appears to reflect 1,25(OH)2D3 effects in epithelial as well as stromal cells, however, induction of CD14 expression is likely restricted to the epithelial compartment.
Resumo:
Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.
Resumo:
The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.
Resumo:
The DNA topology is an important modifier of DNA functions. Torsional stress is generated when right handed DNA is either over- or underwound, producing structural deformations which drive or are driven by processes such as replication, transcription, recombination and repair. DNA topoisomerases are molecular machines that regulate the topological state of the DNA in the cell. These enzymes accomplish this task by either passing one strand of the DNA through a break in the opposing strand or by passing a region of the duplex from the same or a different molecule through a double-stranded cut generated in the DNA. Because of their ability to cut one or two strands of DNA they are also target for some of the most successful anticancer drugs used in standard combination therapies of human cancers. An effective anticancer drug is Camptothecin (CPT) that specifically targets DNA topoisomerase 1 (TOP 1). The research project of the present thesis has been focused on the role of human TOP 1 during transcription and on the transcriptional consequences associated with TOP 1 inhibition by CPT in human cell lines. Previous findings demonstrate that TOP 1 inhibition by CPT perturbs RNA polymerase (RNAP II) density at promoters and along transcribed genes suggesting an involvement of TOP 1 in RNAP II promoter proximal pausing site. Within the transcription cycle, promoter pausing is a fundamental step the importance of which has been well established as a means of coupling elongation to RNA maturation. By measuring nascent RNA transcripts bound to chromatin, we demonstrated that TOP 1 inhibition by CPT can enhance RNAP II escape from promoter proximal pausing site of the human Hypoxia Inducible Factor 1 (HIF-1) and c-MYC genes in a dose dependent manner. This effect is dependent from Cdk7/Cdk9 activities since it can be reversed by the kinases inhibitor DRB. Since CPT affects RNAP II by promoting the hyperphosphorylation of its Rpb1 subunit the findings suggest that TOP 1inhibition by CPT may increase the activity of Cdks which in turn phosphorylate the Rpb1 subunit of RNAP II enhancing its escape from pausing. Interestingly, the transcriptional consequences of CPT induced topological stress are wider than expected. CPT increased co-transcriptional splicing of exon1 and 2 and markedly affected alternative splicing at exon 11. Surprisingly despite its well-established transcription inhibitory activity, CPT can trigger the production of a novel long RNA (5’aHIF-1) antisense to the human HIF-1 mRNA and a known antisense RNA at the 3’ end of the gene, while decreasing mRNA levels. The effects require TOP 1 and are independent from CPT induced DNA damage. Thus, when the supercoiling imbalance promoted by CPT occurs at promoter, it may trigger deregulation of the RNAP II pausing, increased chromatin accessibility and activation/derepression of antisense transcripts in a Cdks dependent manner. A changed balance of antisense transcripts and mRNAs may regulate the activity of HIF-1 and contribute to the control of tumor progression After focusing our TOP 1 investigations at a single gene level, we have extended the study to the whole genome by developing the “Topo-Seq” approach which generates a map of genome-wide distribution of sites of TOP 1 activity sites in human cells. The preliminary data revealed that TOP 1 preferentially localizes at intragenic regions and in particular at 5’ and 3’ ends of genes. Surprisingly upon TOP 1 downregulation, which impairs protein expression by 80%, TOP 1 molecules are mostly localized around 3’ ends of genes, thus suggesting that its activity is essential at these regions and can be compensate at 5’ ends. The developed procedure is a pioneer tool for the detection of TOP 1 cleavage sites across the genome and can open the way to further investigations of the enzyme roles in different nuclear processes.
Resumo:
Drug addiction manifests clinically as compulsive drug seeking, and cravings that can persist and recur even after extended periods of abstinence. The fundamental principle that unites addictive drugs is that each one enhances synaptic DA by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. Our attention has focused on the study of phenomena associated with the consumption of alcohol and heroin. Alcohol has long been considered an unspecific pharmacological agent, recent molecular pharmacology studies have shown that acts on different primary targets. Through gene expression studies conducted recently it has been shown that the classical opioid receptors are differently involved in the consumption of ethanol and, furthermore, the system nociceptin / NOP, included in the family of endogenous opioid system, and both appear able to play a key role in the initiation of alcohol use in rodents. What emerges is that manipulation of the opioid system, nociceptin, may be useful in the treatment of addictions and there are several evidences that support the use of this strategy. The linkage between gene expression alterations and epigenetic modulation in PDYN and PNOC promoters following alcohol treatment confirm the possible chromatin remodeling mechanism already proposed for alcoholism. In the second part of present study, we also investigated alterations in signaling molecules directly associated with MAPK pathway in a unique collection of postmortem brains from heroin abusers. The interest was focused on understanding the effects that prolonged exposure of heroin can cause in an individual, over the entire MAPK cascade and consequently on the transcription factor ELK1, which is regulated by this pathway. We have shown that the activation of ERK1/2 resulting in Elk-1 phosphorylation in striatal neurons supporting the hypothesis that prolonged exposure to substance abuse causes a dysregulation of MAPK pathway.
Resumo:
Im Rahmen der vorliegenden Dissertation wurden Untersuchungen zur Expression und Funktion der respiratorischen Proteine Neuroglobin (Ngb) und Cytoglobin (Cygb) in Vertebraten durchgeführt. Beide Globine wurden erst kürzlich entdeckt, und ihre Funktionen konnten trotz vorliegender Daten zur Struktur und biochemischen Eigenschaften dieser Proteine bisher nicht eindeutig geklärt werden. Im ersten Abschnitt der vorliegenden Arbeit wurde die zelluläre und subzelluläre Lokalisation von Neuroglobin und Cytoglobin in murinen Gewebeschnitten untersucht. Die Expression von Ngb in neuronalen und endokrinen Geweben hängt offensichtlich mit den hohen metabolischen Aktivitäten dieser Organe zusammen. Insbesondere im Gehirn konnten regionale Unterschiede in der Ngb-Expression beobachtet werden. Dabei korrelierte eine besonders starke Neuroglobin-Expression mit Gehirnbereichen, die bekanntermaßen die höchsten Grundaktivitäten aufweisen. In Anbetracht dessen liegt die Funktion des Neuroglobins möglicherweise im basalen O2-Metabolismus dieser Gewebe, wobei Ngb als O2-Lieferant und kurzfristiger O2-Speicher den vergleichsweise hohen Sauerstoffbedarf vor Ort sicherstellen könnte. Weitere Funktionen in der Entgiftung von ROS bzw. RNS oder die kürzlich publizierte mögliche Rolle des Ngb bei der Verhinderung der Mitochondrien-vermittelten Apoptose durch eine Reduktion des freigesetzten Cytochrom c wären darüber hinaus denkbar. Die Cygb-Expression im Gehirn beschränkte sich auf relativ wenige Neurone in verschiedenen Gehirnbereichen und zeigte dort vorwiegend eine Co-Lokalisation mit der neuronalen NO-Synthase. Dieser Befund legt eine Funktion des Cytoglobins im NO-Metabolismus nahe. Quantitative RT-PCR-Experimente zur mRNA-Expression von Ngb und Cygb in alternden Säugern am Bsp. der Hamsterspezies Phodopus sungorus zeigten keine signifikanten Änderungen der mRNA-Mengen beider Globine in alten im Vergleich zu jungen Tieren. Dies widerspricht publizierten Daten, in denen bei der Maus anhand von Western Blot-Analysen eine Abnahme der Neuroglobin-Menge im Alter gezeigt wurde. Möglicherweise handelt es sich hierbei um speziesspezifische Differenzen. Die im Rahmen dieser Arbeit durchgeführte vergleichende Sequenzanalyse der humanen und murinen NGB/Ngb-Genregion liefert zum einen Hinweise auf die mögliche Regulation der Ngb-Expression und zum anderen eine wichtige Grundlage für die funktionellen Analysen dieses Gens. Es konnte ein minimaler Promotorbereich definiert werden, der zusammen mit einigen konservierten regulatorischen Elementen als Basis für experimentelle Untersuchungen der Promotoraktivität in Abhängigkeit von äußeren Einflüssen dienen wird. Bioinformatische Analysen führten zur Identifizierung des sog. „neuron restrictive silencer element“ (NRSE) im Ngb-Promotor, welches vermutlich für die vorwiegend neuronale Expression des Proteins verantwortlich ist. Die kontrovers diskutierte O2-abhängige Regulation der Ngb-Expression konnte hingegen anhand der durchgeführten komparativen Sequenzanalysen nicht bestätigt werden. Es wurden keine zwischen Mensch und Maus konservierten Bindestellen für den Transkriptionsfaktor HIF-1 identifiziert, der die Expression zahlreicher hypoxieregulierter Gene, z.B. Epo und VEGF, vermittelt. Zusammen mit den in vivo-Daten spricht dies eher gegen eine Regulation der Ngb-Expression bei verminderter Verfügbarkeit von Sauerstoff. Die Komplexität der Funktionen von Ngb und Cygb im O2-Stoffwechsel der Vertebraten macht den Einsatz muriner Modellsysteme unerlässlich, die eine sukzessive Aufklärung der Funktionen beider Proteine erlauben. Die vorliegende Arbeit liefert auch dazu einen wichtigen Beitrag. Die hergestellten „gene-targeting“-Vektorkonstrukte liefern in Verbindung mit den etablierten Nachweisverfahren zur Genotypisierung von embryonalen Stammzellen die Grundlage zur erfolgreichen Generierung von Ngb-knock out sowie Ngb- und Cygb-überexprimierenden transgenen Tieren. Diese werden für die endgültige Entschlüsselung funktionell relevanter Fragestellungen von enormer Bedeutung sein.
Resumo:
Hypoxie ist ein Zustand des Sauerstoffmangels, hervorgerufen durch fehlende Verfügbarkeit von Sauerstoff in der Umgebung eines Organismus oder durch pathologisch bedingte unzureichende Nutzbarkeit des Sauerstoffs von Geweben. Die Sensitivität gegenüber Hypoxie variiert enorm im Tierreich zwischen verschiedenen Phyla und Spezies. Die meisten Säugetiere sind nur unzureichend an niedrige Sauerstoffkonzentrationen angepasst, wohingegen einige unterirdisch lebende Säuger sehr resistent gegen Hypoxiestress sind. Um die molekulare Basis der Hypoxietoleranz zu bestimmen, wurden in der vorliegenden Arbeit Globine untersucht, die potenziell in der Lage sind, als respiratorische Proteine zur Hypoxietoleranz von Tieren beizutragen. Dazu wurde die Expression der Globine in der hypoxieresistenten, in Israel lebenden Blindmaus Spalax ehrenbergi mit der Genexpression in der hypoxiesensitiven Ratte (Rattus norvegicus) verglichen. In der vorliegenden Arbeit wurden die erst vor wenigen Jahren entdeckten Globine Neuroglobin und Cytoglobin untersucht, deren exakte physiologische Rolle noch unklar ist, und mit Daten des viel detaillierter untersuchten Myoglobins verglichen. Beim Vergleich der Expression von Cytoglobin und Neuroglobin in Spalax versus Ratte fällt auf, dass Neuroglobin und Cytoglobin bereits unter normoxischen Bedingungen auf mRNA- und Proteinebene in der Blindmaus um einen Faktor von mindesten 2 bis 3 verstärkt exprimiert werden. Bei Myoglobin (als dem Kontrollgen mit bekannter Funktion) konnte auf mRNA-Ebene eine noch weitaus stärkere Expression in Spalax vs. Ratte gefunden werden. Das übergreifende Phänomen der verstärkten Genexpression von Globinen in Spalax kann im Sinne einer Präadaptation an das unterirdische, häufig hypoxische Leben der Blindmaus interpretiert werden. Einen weiteren Hinweis auf eine besondere, spezialisierte Funktion von Neuroglobin in Spalax geben immunhistochemische Daten, die zeigen, dass Neuroglobin im Gehirn von Spalax im Gegensatz zur Ratte nicht nur in Neuronen, sondern auch in Gliazellen exprimiert wird. Dies impliziert Änderungen des oxidativen Stoffwechsels im Nervensystem der hypoxietoleranten Spezies. Die zellulären Expressionsmuster von Cytoglobin erscheinen hingegen in beiden Säugerspezies weitgehend identisch. Es wurde der Frage nachgegangen, ob und wie experimentell induzierte Hypoxie die Genexpression der Globine verändert. Dabei zeigten sich für Neuroglobin und Cytoglobin unterschiedliche Expressionsmuster. Neuroglobin wird unter diversen Sauerstoffmangelbedingungen sowohl in der Ratte als auch in Spalax auf mRNA- und Proteinebene herunterreguliert. Ein ähnliches Regulationsverhalten wurde auch für Myoglobin beobachtet. Die verminderte Expression von Neuroglobin (und evtl. auch Myoglobin) unter Hypoxie ist mit einer gezielten Verringerung der Sauerstoff-Speicherkapazität in Abwesenheit von O2 zu erklären. Ein weiterer denkbarer Grund könnte auch die allgemeine Tendenz sein, unter Hypoxie aus Energiespargründen den Metabolismus herunter zu regulieren. Cytoglobin, das bei normalen Sauerstoffbedingungen nur im Gehirn von Spalax (nicht jedoch in Herz und Leber) ebenfalls um Faktor 2 bis 3 stärker exprimiert wird als in der Ratte, ist mit einiger Sicherheit ebenfalls von adaptivem Nutzen für die Anpassung von Spalax an niedrige Sauerstoffbedingungen, wenngleich seine Funktion unklar bleibt. Unter Hypoxie wird die Cytoglobin-mRNA sowohl in Spalax als auch in der Ratte hochreguliert. Es konnte in der vorliegenden Arbeit dargelegt werden, dass die Expression von Cygb höchstwahrscheinlich durch den Transkriptionsfaktor Hif-1 gesteuert wird, der die molekulare Hypoxieantwort vieler Tierarten zentral steuert. In der vorliegenden Arbeit wurde ebenfalls die Expression von Ngb und Cygb im Gehirn des Hausschweins (Sus scrofa) untersucht. Diese Spezies diente in der Arbeit als weiterer hypoxiesensitiver Organismus sowie als biomedizinisch relevantes Modell für eine Operation an Säuglingen mit angeborenen Herzkrankheiten. Die Versuche haben gezeigt, dass die Gabe bestimmter Medikamente wie dem Immunsuppressivum FK506 zu einer erhöhten Ngb-Konzentration auf mRNA-Ebene führen kann, was potenziell im Zusammenhang mit beobachteten protektiven Effekten der Medikamentengabe während und nach der Herzoperation steht.
Resumo:
E2F-1 is a transcription factor that plays a key role in cell-cycle control at G1/S check-point level by regulating the timely expression of many target genes whose products are required for S phase entry and progression. In mammalian cells, E2F-1 is negatively regulated by hypo-phosphorylated Retinoblastoma protein (pRb) whereas it is protected against degradation by its binding to Mouse Double Minute 2 protein (MDM2). In this study we experimented a drug combination in order to obtain a strong down-regulation of E2F-1 by acting on two different mechanisms of E2F-1 regulation mentioned above. This was achieved by combining drugs inhibiting the phosphorylation of pRb with drugs inactivating the MDM2 binding capability. The mechanism of action of these drugs in down-regulating E2F-1 level and activity is p53 independent. As expected, when combined, these drugs strongly inhibits E2F-1 and hinder cell proliferation in p53-/- and p53-mutated cells by blocking them in G1 phase of cell cycle, suggesting that E2F-1 down-regulation may represent a valid chemotherapeutic approach to inhibit proliferation in tumors independently of p53 status.
Resumo:
Ovarialkarzinome stellen eine schwer zu therapierende onkologische Erkrankung mit im Durchschnitt sehr schlechter Prognose dar. Die Notwendigkeit einer weiteren Verbesserung der Therapie dieser Erkrankung ist sehr offensichtlich. Studien an anderen Tumorentitäten haben die große Bedeutung des Glukosestoffwechsels, speziell des Laktats, in der Erken- nung, Kategorisierung und Therapie von onkologischen Erkrankungen gezeigt. In der Kon- trolle des Glukosestoffwechsels, aber auch vieler anderer Funktionen, wie z. B. des Tumor- wachstums und des Zellüberlebens, hat sich der Hypoxia Inducible Factor (HIF) als beson- ders wichtig herausgestellt. In der vorliegenden Arbeit wurde daher der Glukosestoffwechsel in Ovarialkarzinomen und seine Beeinflussung durch eine Herunterregulierung von HIF-1α untersucht. Hierzu wurden die Ovarialkarzinomzelllinien OC 316 und IGROV1 (Wildtyp) und die Zelllinie OC 316 mit einem lentiviralen Vektor zur Herunterregulierung von HIF-1α ver- wendet. Das Wachstumsverhalten, die Laktatproduktion und der Glukoseverbrauch wurden bei diesen Zelllinien in vitro untersucht. Darüber hinaus wurden mithilfe der bildgebenden Biolumineszenz ATP, Laktat, Pyruvat und Glukose in Xenotransplantaten dieser Zelllinien gemessen. Diese in unserer Arbeitsgruppe entwickelte Methode erlaubt die quantitative Er- fassung von Metaboliten in selektiven Gewebsarealen, wie z. B. in vitalen Tumorregionen, in stomatösen Arealen oder im tumornahen Normalgewebe.rnIn dieser Arbeit kann gezeigt werden, dass die glykolytische Aktivität von Ovarialkarzinom- zelllinien mit dem Wachstumsverhalten positiv korreliert ist. Eine Herunterregulierung von HIF-1α führt zu einer deutlichen Verlangsamung des Zellwachstums, wobei allerdings alle HIF-Zielgene betroffen sein können. Des Weiteren wird mit den hier gezeigten Daten die prognostische Bedeutung des Laktats bestätigt. Hohe Laktatwerte in vitro waren mit schnel- lerem Wachstum korreliert. Zusätzlich zeigen die vorliegenden Daten, dass die gewonnenen Befunde in vitro nur näherungsweise auf die in vivo Situation übertragbar sind. Eine Herun- terregulierung von HIF-1α zeigt keine signifikant unterschiedlichen Laktatwerte in den Xe- notransplantaten. Allerdings spiegeln sich zelllinienspezifische Unterschiede in der metabo- lischen Aktivität in vitro im metabolischen Verhalten der entsprechenden Xenografttumoren recht gut wider.rnDie gewonnenen Ergebnisse weisen zum einen auf die prognostische Bedeutung einer Bestimmung von Laktatkonzentrationen aus Tumorbiopsien hin und bestätigen zum anderen die klinische Aussagekraft metabolischer Aktivitätsmessungen mittels PET. Solche Daten könnten dazu dienen Patienten einer individualisierten Therapie zuzuführen. Außerdem wur- de die Effektivität, aber auch die Komplexität einer gegen HIF-1α gerichteten Therapie auf Protein- und Genebene bestätigt. Somit zeigen die erzielten Resultate einerseits Möglichkei- ten einer individualisierten Therapie auf, andererseits unterstreichen sie die große Notwen- digkeit weiterer Grundlagenforschung auf diesem Gebiet.
Resumo:
The transcription factor PU.1 is essential for myeloid development. Targeted disruption of an upstream regulatory element (URE) decreases PU.1 expression by 80% and leads to acute myeloid leukemia (AML) in mice. Here, we sequenced the URE sequences of PU.1 in 120 AML patients. Four polymorphisms (single nucleotide polymorphisms [SNPs]) in the URE were observed, with homozygosity in all SNPs in 37 patients. Among them, we compared samples at diagnosis and remission, and one patient with cytogenetically normal acute myeloid leukemia M2 was identified with heterozygosity in 3 of the SNPs in the URE at remission. Loss of heterozygosity was further found in this patient at 2 polymorphic sites in the 5' promoter region and in 2 intronic sites flanking exon 4, thus suggesting loss of heterozygosity covering at least 40 kb of the PU.1 locus. Consistently, PU.1 expression in this patient was markedly reduced. Our study suggests that heterozygous deletion of the PU.1 locus can be associated with human AML.
Resumo:
Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.
Resumo:
The transcription factor PU.1 is a master regulator of myeloid differentiation and function. On the other hand, only scarce information is available on PU.1-regulated genes involved in cell survival. We now identified the glycolytic enzyme hexokinase 3 (HK3), a gene with cytoprotective functions, as transcriptional target of PU.1. Interestingly, HK3 expression is highly associated with the myeloid lineage and was significantly decreased in acute myeloid leukemia patients compared with normal granulocytes. Moreover, HK3 expression was significantly lower in acute promyelocytic leukemia (APL) compared with non-APL patient samples. In line with the observations in primary APL patient samples, we observed significantly higher HK3 expression during neutrophil differentiation of APL cell lines. Moreover, knocking down PU.1 impaired HK3 induction during neutrophil differentiation. In vivo binding of PU.1 and PML-RARA to the HK3 promoter was found, and PML-RARA attenuated PU.1 activation of the HK3 promoter. Next, inhibiting HK3 in APL cell lines resulted in significantly reduced neutrophil differentiation and viability compared with control cells. Our findings strongly suggest that HK3 is: (1) directly activated by PU.1, (2) repressed by PML-RARA, and (3) functionally involved in neutrophil differentiation and cell viability of APL cells.
Resumo:
Infection of canine footpads with the canine distemper virus (CDV) can cause massive epidermal thickening (hard pad disease), as a consequence of increased proliferation of keratinocytes and hyperkeratosis. Keratinocytes of canine footpad epidermis containing detectable CDV nucleoprotein antigen and CDV mRNA were shown previously to have increased proliferation indices. Because various proteins that play a role in the proliferation of epidermal cells are viral targets, the potential participation of such proteins in CDV-associated keratinocyte proliferation was investigated. Transforming growth factor-alpha (TGF-alpha), cell cycle regulatory proteins p21, p27 and p53, and nuclear factor (NF)-kappaB transcription factor components p50 and p65 were studied in the footpad epidermis from the following groups of dogs inoculated with CDV: group 1, consisting of seven dogs with clinical distemper and CDV in the footpad epidermis; group 2, consisting of four dogs with clinical distemper but no CDV in the footpad epidermis; group 3, consisting of eight dogs with neither clinical distemper nor CDV in the footpad epithelium. Group 4 consisted of two uninoculated control dogs. The expression of TGF-alpha, p21, p27 and p53, and p50 in the basal layer, lower and upper spinous layers, and in the granular layer did not differ statistically between CDV-positive (group 1) and CDV-negative (groups 2-4) footpad epidermis. However, there were differences in the levels of nuclear and cytoplasmic p65 expression between group 1 dogs and the other three groups. Thus, footpads from group 1 dogs had more keratinocytes containing p65 in the cytoplasm and, conversely, fewer nuclei that were positive for p65. These findings indicate that p65 translocation into the nucleus is reduced in CDV-infected footpad epidermis. Such decreased translocation of p65 may help to explain increased keratinocyte proliferation in hard pad disease and suggests interference of CDV with the NF-kappaB pathway.
Resumo:
Tightly regulated expression of the transcription factor PU.1 is crucial for normal hematopoiesis. PU.1 knockdown mice develop acute myeloid leukemia (AML), and PU.1 mutations have been observed in some populations of patients with AML. Here we found that conditional expression of promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA), the protein encoded by the t(15;17) translocation found in acute promyelocytic leukemia (APL), suppressed PU.1 expression, while treatment of APL cell lines and primary cells with all-trans retinoic acid (ATRA) restored PU.1 expression and induced neutrophil differentiation. ATRA-induced activation was mediated by a region in the PU.1 promoter to which CEBPB and OCT-1 binding were induced. Finally, conditional expression of PU.1 in human APL cells was sufficient to trigger neutrophil differentiation, whereas reduction of PU.1 by small interfering RNA (siRNA) blocked ATRA-induced neutrophil differentiation. This is the first report to show that PU.1 is suppressed in acute promyelocytic leukemia, and that ATRA restores PU.1 expression in cells harboring t(15;17).