988 resultados para Gregory I, Pope, approximately 540-604.
Resumo:
A mycelial beta-glucosidase from the thermophilic mold Humicola insolens was purified and biochemically characterized. The enzyme showed carbohydrate content of 21% and apparent molecular mass of 94 kDa, as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed a single polypeptide band of 55 kDa, suggesting that the native enzyme was a homodimer. Mass spectrometry analysis showed amino acid sequence similarity with a P-glucosidase from Humicola grisea var. thermoidea, with about 22% coverage. Optima of temperature and pH were 60 degrees C and 6.0-6.5, respectively. The enzyme was stable up to I h at 50 degrees C and showed a half-life of approximately 44 min at 55 degrees C. The beta-glucosidase hydrolyzed cellobiose, lactose, p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-galactopyranoside, o-nitrophenyl-beta-D-galactopyranoside, and salicin. Kinetic studies showed that p-nitrophenyl-beta-D-fucopyranoside and cellobiose were the best enzyme substrates. Enzyme activity was stimulated by glucose or xylose at concentrations up to 400 mM, with maximal stimulatory effect (about 2-fold) around 40 mM. The high catalytic efficiency for the natural substrate, good thermal stability, strong stimulation by glucose or xylose, and tolerance to elevated concentrations of these monosaccharides qualify this enzyme for application in the hydrolysis of cellulosic materials. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Although lacking catalytic activity, the Lys49-PLA(2)s damage artificial membranes by a Ca2+-independent mechanism, and demonstrate a potent bactericidal effect. The relationship between the membrane-damaging activity and bactericidal effect of bothropstoxin-I (BthTx-1), a Lys49-PLA(2) from the venom of Bothrops jararacussu, was evaluated for the wildtype protein and a series of site-directed mutants in the active site and C-terminal regions of the protein. The membrane permeabilization effect against the inner and outer membranes of Escherichia coli K12 was evaluated by fluorescence changes of Sytox Green and N-phenyl-N-naphthylamine, respectively. With the exception of H48Q, all mutants reduced the bactericidal activity, which correlated with a reduction of the permeabilization effect both against the inner bacterial membrane. No significant differences in the permeabilization of the bacterial outer membrane were observed between the native, wild-type recombinant and mutant proteins. These results suggest different permeabilization mechanisms against the inner and outer bacterial membranes. Furthermore, the structural determinants of bacterial inner membrane damage identified in this study correlate with those previously observed for artificial membrane permeabilization, suggesting that a common mechanism of membrane damage underlies the two effects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The structural determinants of myotoxicity of bothropstoxin-I (BthTX-I), a Lys49 phospholipase A(2) from Bothrops jararacussu venom, were studied by measuring the resting membrane potential in the mouse phrenic nerve-diaphragm preparation. This method proved to be around 100-fold more sensitive than the creatine kinase release assay, and was used to evaluate a total of 31 site-directed BthTX-I alanine scanning mutants. Mutants that reduced the resting membrane potential were located in a surface patch defined by residues in the C-terminal loop (residues 115-129), positions 37-39 in the membrane interfacial recognition surface (Y46 and K54), and residue K93. These results expand the known structural determinants of the biological activity as evaluated by previous creatine kinase release experiments. Furthermore, a strong correlation is observed between the structural determinants of sarcolemma depolarization and calcium-independent disruption of liposome membranes, suggesting that a common mechanism of action underlies the permeabilization of the biological and model membranes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A mutant version of the N-terminal domain of Escherichia coli DnaB helicase was used as a model system to assess the stabilization against unfolding gained by covalent cyclization. Cyclization was achieved in vivo by formation of an amide bond between the N and C termini with the help of a split mini-intein. Linear and circular proteins were constructed to be identical in amino acid sequence. Mutagenesis of Phe102 to Glu rendered the protein monomeric even at high concentration. A difference in free energy of unfolding, DeltaDeltaG, between circular and linear protein of 2.3(+/-0.5) kcal mol(-1) was measured at 10degreesC by circular dichroism. A theoretical estimate of the difference in conformational entropy of linear and circular random chains in a three-dimensional cubic lattice model predicted DeltaDeltaG = 2.3 kcal mol(-1), suggesting that stabilization by protein cyclization is driven by the reduced conformational entropy of the unfolded state. Amide-proton exchange rates measured by NMR spectroscopy and mass spectrometry showed a uniform, approximately tenfold decrease of the exchange rates of the most slowly exchanging amide protons, demonstrating that cyclization globally decreases the unfolding rate of the protein. The amide proton exchange was found to follow EX1 kinetics at near-neutral pH, in agreement with an unusually slow refolding I measured by stopped-flow circular dichroism. rate of less than 4 min(-1) The linear and circular proteins differed more in their unfolding than in their folding rates. Global unfolding of the N-terminal domain of E. coli DnaB is thus promoted strongly by spatial separation of the N and C termini, whereas their proximity is much less important for folding. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Colonial spiders evolved a differential prey-capture behaviour in concert with their venom chemistry, which may be a source of novel drugs. Some highly active tetrahydro-beta-carboline (TH beta C) toxins were recently isolated from the venom of the colonial spider Parawixia bistriata; the spiders use these toxins as part of their chemical arsenal to kill and/or paralyze preys. The major TH beta C compound isolated from this venom was identified as 6-hydroxytrypargine, also known as PwTX-I. Most natural compounds of animal origin occur in low abundance, and the natural abundance of PwTX-I is insufficient for complete functional characterization. Thus, PwTx-I was synthesized using a Pictet-Spengler condensation strategy, and the stereoisomers of the synthetic toxin were separated by chiral chromatography. The fraction of venom containing a mixture of three natural TH beta C toxins and enantiomers of PwTx-I were analyzed for inhibition of monoamine oxidase (MAO)-A and -B and for toxicity to insects. We reveal that the mixture of the natural TH beta C toxins, as well as the enantiomers of PwTx-I, were non-competitive inhibitors of MAO-A and MAO-B and caused potent paralysis of honeybees. The (-)-PwTX-I enantiomer is 2-fold more potent than the (+)-PwTX-I enantiomer in the assays performed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of the snake Bothrops jararacussu, which permeabilizes biological and artificial membranes by a mechanism independent of lipid hydrolysis. This mechanism has been investigated by studying the interaction of nine single tryptophan BthTx-I mutants with negatively charged phospholipid membranes. Changes in the solvent exposure of the tryptophan in each mutant were evaluated comparing the rate of chemical modification (k(mod)) by bromosuccinamide with the maximum intrinsic tryptophan fluorescence emission wavelength (lambda(max)) in buffer and in the presence of 10% DMPA/90% DPPC liposomes. No changes in lambda(max). were observed, whereas k(mod) values for tryptophans at positions 7, 10, 31 and 125 were significantly reduced in the presence of lipids, suggesting that bound phospholipid decreases solvent accessibility at these positions. Since the half-lives of the fluorescence and chemical modification effects differ by at least six orders of magnitude, these results suggest that the bound phospholipid may interact with multiple locations on the protein surface over micro- to millisecond timescales. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Bothropstoxin-I (BthTx-I), a Lys49-PLA(2) from Bothrops jararacussu venom, permeabilizes membranes by a non-hydrolytic Ca(2+)-independent mechanism. The BthTx-I showed activity against liposomes including 10% and 50% negatively charged lipids at pH 7.0, but not at pH 5.0. Nevertheless, ultracentrifugation and FRET demonstrated that at pH 5.0 the BthTx-I is bound to 50% negatively charged membranes. ANS binding identified a non-native monomeric conformation at pH 5.0, suggesting that tertiary structure alterations result in activity loss of the BthTx-I at low pH. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: Many guidelines advocate measurement of total or low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), and triglycerides (TG) to determine treatment recommendations for preventing coronary heart disease (CHD) and cardiovascular disease (CVD). This analysis is a comparison of lipid variables as predictors of cardiovascular disease. METHODS: Hazard ratios for coronary and cardiovascular deaths by fourths of total cholesterol (TC), LDL, HDL, TG, non-HDL, TC/HDL, and TG/HDL values, and for a one standard deviation change in these variables, were derived in an individual participant data meta-analysis of 32 cohort studies conducted in the Asia-Pacific region. The predictive value of each lipid variable was assessed using the likelihood ratio statistic. RESULTS: Adjusting for confounders and regression dilution, each lipid variable had a positive (negative for HDL) log-linear association with fatal CHD and CVD. Individuals in the highest fourth of each lipid variable had approximately twice the risk of CHD compared with those with lowest levels. TG and HDL were each better predictors of CHD and CVD risk compared with TC alone, with test statistics similar to TC/HDL and TG/HDL ratios. Calculated LDL was a relatively poor predictor. CONCLUSIONS: While LDL reduction remains the main target of intervention for lipid-lowering, these data support the potential use of TG or lipid ratios for CHD risk prediction. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In this work a new approach for designing planar gradient coils is outlined for the use in an existing MRI apparatus. A technique that allows for gradient field corrections inside the diameter-sensitive volume is deliberated. These corrections are brought about by making changes to the wire paths that constitute the coil windings, and hence, is called the path correction method. The existing well-known target held method is used to gauge the performance of a typical gradient coil. The gradient coil design methodology is demonstrated for planar openable gradient coils that can be inserted into an existing MRI apparatus. The path corrected gradient coil is compared to the coil obtained using the target field method. It is shown that using a wire path correction with optimized variables, winding patterns that can deliver high magnetic gradient field strengths and large imaging regions can be obtained.
Resumo:
DNA-hsp65, a DNA vaccine encoding the 65-kDa heat-shock protein of Mycobacterium leprae (Hsp65) is capable of inducing the reduction of established tumors in mouse models. We conducted a phase I clinical trial of DNA-hsp65 in patients with advanced head and neck carcinoma. In this article, we report on the vaccine`s potential to induce immune responses to Hsp65 and to its human homologue, Hsp60, in these patients. Twenty-one patients with unresectable squamous cell carcinoma of the head and neck received three doses of 150, 400 or 600 mu g naked DNA-hsp65 plasmid by ultrasound-guided intratumoral injection. Vaccination did not increase levels of circulating anti-hsp65 IgG or IgM antibody, or lead to detectable Hsp65-specific cell proliferation or interferon-gamma (IFN-gamma) production by blood mononuclear cells. Frequency of antigen-induced IL-10-producing cells increased after vaccination in 4 of 13 patients analyzed. Five patients showed disease stability or regression following immunization; however, we were unable to detect significant differences between these patients and those with disease progression using these parameters. There was also no increase in antibody or IFN-gamma responses to human Hsp60 in these patients. Our results suggest that although DNA-hsp65 was able to induce some degree of immunostimulation with no evidence of pathological autoimmunity, we were unable to differentiate between patients with different clinical outcomes based on the parameters measured. Future studies should focus on characterizing more reliable correlations between immune response parameters and clinical outcome that may be used as predictors of vaccine success in immunosuppressed individuals. Cancer Gene Therapy (2009) 16, 598-608; doi:10.1038/cgt.2009.9; published online 6 February 2009