902 resultados para Graph-based methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis's LogP and MlogP; and one program used a whole molecule approach: QikProp. The predictive accuracy of the programs was assessed using r(2) values, with ALogP being the most effective (r( 2) = 0.822) and MLogP the least (r(2) = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all peptides - ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides - PLogP, XLogP, ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides - QikProp, IALogP, ALogP, ACDLogP, MLogP, XLogP, LogKow and PLogP; cyclic peptides - LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and those of unblocked peptides were over-predicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As torrents of new data now emerge from microbial genomics, bioinformatic prediction of immunogenic epitopes remains challenging but vital. In silico methods often produce paradoxically inconsistent results: good prediction rates on certain test sets but not others. The inherent complexity of immune presentation and recognition processes complicates epitope prediction. Two encouraging developments – data driven artificial intelligence sequence-based methods for epitope prediction and molecular modeling methods based on three-dimensional protein structures – offer hope for the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Иво Й. Дамянов - Манипулирането на булеви функции е основнo за теоретичната информатика, в това число логическата оптимизация, валидирането и синтеза на схеми. В тази статия се разглеждат някои първоначални резултати относно връзката между граф-базираното представяне на булевите функции и свойствата на техните променливи.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current research activities of the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences (IMI—BAS) include the study and application of knowledge-based methods for the creation, integration and development of multimedia digital libraries with applications in cultural heritage. This report presents IMI-BAS’s developments at the digital library management systems and portals, i.e. the Bulgarian Iconographical Digital Library, the Bulgarian Folklore Digital Library and the Bulgarian Folklore Artery, etc. developed during the several national and international projects: - "Digital Libraries with Multimedia Content and its Application in Bulgarian Cultural Heritage" (contract 8/21.07.2005 between the IMI–BAS, and the State Agency for Information Technologies and Communications; - FP6/IST/P-027451 PROJECT LOGOS "Knowledge-on-Demand for Ubiquitous Learning", EU FP6, IST, Priority 2.4.13 "Strengthening the Integration of the ICT research effort in an Enlarged Europe" - NSF project D-002-189 SINUS "Semantic Technologies for Web Services and Technology Enhanced Learning". - NSF project IO-03-03/2006 ―Development of Digital Libraries and Information Portal with Virtual Exposition "Bulgarian Folklore Heritage". The presented prototypes aims to provide flexible and effective access to the multimedia presentation of the cultural heritage artefacts and collections, maintaining different forms and format of the digitized information content and rich functionality for interaction. The developments are a result of long- standing interests and work in the technological developments in information systems, knowledge processing and content management systems. The current research activities aims at creating innovative solutions for assembling multimedia digital libraries for collaborative use in specific cultural heritage context, maintaining their semantic interoperability and creating new services for dynamic aggregation of their resources, access improvement, personification, intelligent curation of content, and content protection. The investigations are directed towards the development of distributed tools for aggregating heterogeneous content and ensuring semantic compatibility with the European digital library EUROPEANA, thus providing possibilities for pan- European access to rich digitalised collections of Bulgarian cultural heritage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Images on food and dietary supplement packaging might lead people to infer (appropriately or inappropriately) certain health benefits of those products. Research on this issue largely involves direct questions, which could (a) elicit inferences that would not be made unprompted, and (b) fail to capture inferences made implicitly. Using a novel memory-based method, in the present research, we explored whether packaging imagery elicits health inferences without prompting, and the extent to which these inferences are made implicitly. Method: In 3 experiments, participants saw fictional product packages accompanied by written claims. Some packages contained an image that implied a health-related function (e.g., a brain), and some contained no image. Participants studied these packages and claims, and subsequently their memory for seen and unseen claims were tested. Results: When a health image was featured on a package, participants often subsequently recognized health claims that—despite being implied by the image—were not truly presented. In Experiment 2, these recognition errors persisted despite an explicit warning against treating the images as informative. In Experiment 3, these findings were replicated in a large consumer sample from 5 European countries, and with a cued-recall test. Conclusion: These findings confirm that images can act as health claims, by leading people to infer health benefits without prompting. These inferences appear often to be implicit, and could therefore be highly pervasive. The data underscore the importance of regulating imagery on product packaging; memory-based methods represent innovative ways to measure how leading (or misleading) specific images can be. (PsycINFO Database Record (c) 2016 APA, all rights reserved)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims : Our aim was to investigate the proportional representation of people of South Asian origin in cardiovascular outcome trials of glucose-lowering drugs or strategies in Type 2 diabetes, noting that these are among the most significant pieces of evidence used to formulate the guidelines on which clinical practice is largely based. Methods : We searched for cardiovascular outcome trials in Type 2 diabetes published before January 2015, and extracted data on the ethnicity of participants. These were compared against expected values for proportional representation of South Asian individuals, based on population data from the USA, from the UK, and globally. Results : Twelve studies met our inclusion criteria and, of these, eight presented a sufficiently detailed breakdown of participant ethnicity to permit numerical analysis. In general, people of South Asian origin were found to be under-represented in trials compared with UK and global expectations and over-represented compared with US expectations. Among the eight trials for which South Asian representation could be reliably estimated, seven under-represented this group relative to the 11.2% of the UK diabetes population estimated to be South Asian, with the representation in these trials ranging from 0.0% to 10.0%. Conclusions : Clinicians should exercise caution when generalizing the results of trials to their own practice, with regard to the ethnicity of individuals. Efforts should be made to improve reporting of ethnicity and improve diversity in trial recruitment, although we acknowledge that there are challenges that must be overcome to make this a reality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we evaluate and compare two representativeand popular distributed processing engines for large scalebig data analytics, Spark and graph based engine GraphLab. Wedesign a benchmark suite including representative algorithmsand datasets to compare the performances of the computingengines, from performance aspects of running time, memory andCPU usage, network and I/O overhead. The benchmark suite istested on both local computer cluster and virtual machines oncloud. By varying the number of computers and memory weexamine the scalability of the computing engines with increasingcomputing resources (such as CPU and memory). We also runcross-evaluation of generic and graph based analytic algorithmsover graph processing and generic platforms to identify thepotential performance degradation if only one processing engineis available. It is observed that both computing engines showgood scalability with increase of computing resources. WhileGraphLab largely outperforms Spark for graph algorithms, ithas close running time performance as Spark for non-graphalgorithms. Additionally the running time with Spark for graphalgorithms over cloud virtual machines is observed to increaseby almost 100% compared to over local computer clusters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Healthy brain functioning depends on efficient communication of information between brain regions, forming complex networks. By quantifying synchronisation between brain regions, a functionally connected brain network can be articulated. In neurodevelopmental disorders, where diagnosis is based on measures of behaviour and tasks, a measure of the underlying biological mechanisms holds promise as a potential clinical tool. Graph theory provides a tool for investigating the neural correlates of neuropsychiatric disorders, where there is disruption of efficient communication within and between brain networks. This research aimed to use recent conceptualisation of graph theory, along with measures of behaviour and cognitive functioning, to increase understanding of the neurobiological risk factors of atypical development. Using magnetoencephalography to investigate frequency-specific temporal dynamics at rest, the research aimed to identify potential biological markers derived from sensor-level whole-brain functional connectivity. Whilst graph theory has proved valuable for insight into network efficiency, its application is hampered by two limitations. First, its measures have hardly been validated in MEG studies, and second, graph measures have been shown to depend on methodological assumptions that restrict direct network comparisons. The first experimental study (Chapter 3) addressed the first limitation by examining the reproducibility of graph-based functional connectivity and network parameters in healthy adult volunteers. Subsequent chapters addressed the second limitation through adapted minimum spanning tree (a network analysis approach that allows for unbiased group comparisons) along with graph network tools that had been shown in Chapter 3 to be highly reproducible. Network topologies were modelled in healthy development (Chapter 4), and atypical neurodevelopment (Chapters 5 and 6). The results provided support to the proposition that measures of network organisation, derived from sensor-space MEG data, offer insights helping to unravel the biological basis of typical brain maturation and neurodevelopmental conditions, with the possibility of future clinical utility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, wireless communication infrastructures have been widely deployed for both personal and business applications. IEEE 802.11 series Wireless Local Area Network (WLAN) standards attract lots of attention due to their low cost and high data rate. Wireless ad hoc networks which use IEEE 802.11 standards are one of hot spots of recent network research. Designing appropriate Media Access Control (MAC) layer protocols is one of the key issues for wireless ad hoc networks. ^ Existing wireless applications typically use omni-directional antennas. When using an omni-directional antenna, the gain of the antenna in all directions is the same. Due to the nature of the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 standards, only one of the one-hop neighbors can send data at one time. Nodes other than the sender and the receiver must be either in idle or listening state, otherwise collisions could occur. The downside of the omni-directionality of antennas is that the spatial reuse ratio is low and the capacity of the network is considerably limited. ^ It is therefore obvious that the directional antenna has been introduced to improve spatial reutilization. As we know, a directional antenna has the following benefits. It can improve transport capacity by decreasing interference of a directional main lobe. It can increase coverage range due to a higher SINR (Signal Interference to Noise Ratio), i.e., with the same power consumption, better connectivity can be achieved. And the usage of power can be reduced, i.e., for the same coverage, a transmitter can reduce its power consumption. ^ To utilizing the advantages of directional antennas, we propose a relay-enabled MAC protocol. Two relay nodes are chosen to forward data when the channel condition of direct link from the sender to the receiver is poor. The two relay nodes can transfer data at the same time and a pipelined data transmission can be achieved by using directional antennas. The throughput can be improved significant when introducing the relay-enabled MAC protocol. ^ Besides the strong points, directional antennas also have some explicit drawbacks, such as the hidden terminal and deafness problems and the requirements of retaining location information for each node. Therefore, an omni-directional antenna should be used in some situations. The combination use of omni-directional and directional antennas leads to the problem of configuring heterogeneous antennas, i e., given a network topology and a traffic pattern, we need to find a tradeoff between using omni-directional and using directional antennas to obtain a better network performance over this configuration. ^ Directly and mathematically establishing the relationship between the network performance and the antenna configurations is extremely difficult, if not intractable. Therefore, in this research, we proposed several clustering-based methods to obtain approximate solutions for heterogeneous antennas configuration problem, which can improve network performance significantly. ^ Our proposed methods consist of two steps. The first step (i.e., clustering links) is to cluster the links into different groups based on the matrix-based system model. After being clustered, the links in the same group have similar neighborhood nodes and will use the same type of antenna. The second step (i.e., labeling links) is to decide the type of antenna for each group. For heterogeneous antennas, some groups of links will use directional antenna and others will adopt omni-directional antenna. Experiments are conducted to compare the proposed methods with existing methods. Experimental results demonstrate that our clustering-based methods can improve the network performance significantly. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reduced organic sulfur (ROS) compounds are environmentally ubiquitous and play an important role in sulfur cycling as well as in biogeochemical cycles of toxic metals, in particular mercury. Development of effective methods for analysis of ROS in environmental samples and investigations on the interactions of ROS with mercury are critical for understanding the role of ROS in mercury cycling, yet both of which are poorly studied. Covalent affinity chromatography-based methods were attempted for analysis of ROS in environmental water samples. A method was developed for analysis of environmental thiols, by preconcentration using affinity covalent chromatographic column or solid phase extraction, followed by releasing of thiols from the thiopropyl sepharose gel using TCEP and analysis using HPLC-UV or HPLC-FL. Under the optimized conditions, the detection limits of the method using HPLC-FL detection were 0.45 and 0.36 nM for Cys and GSH, respectively. Our results suggest that covalent affinity methods are efficient for thiol enrichment and interference elimination, demonstrating their promising applications in developing a sensitive, reliable, and useful technique for thiol analysis in environmental water samples. The dissolution of mercury sulfide (HgS) in the presence of ROS and dissolved organic matter (DOM) was investigated, by quantifying the effects of ROS on HgS dissolution and determining the speciation of the mercury released from ROS-induced HgS dissolution. It was observed that the presence of small ROS (e.g., Cys and GSH) and large molecule DOM, in particular at high concentrations, could significantly enhance the dissolution of HgS. The dissolved Hg during HgS dissolution determined using the conventional 0.22 μm cutoff method could include colloidal Hg (e.g., HgS colloids) and truly dissolved Hg (e.g., Hg-ROS complexes). A centrifugal filtration method (with 3 kDa MWCO) was employed to characterize the speciation and reactivity of the Hg released during ROS-enhanced HgS dissolution. The presence of small ROS could produce a considerable fraction (about 40% of total mercury in the solution) of truly dissolved mercury (< 3 kDa), probably due to the formation of Hg-Cys or Hg-GSH complexes. The truly dissolved Hg formed during GSH- or Cys-enhanced HgS dissolution was directly reducible (100% for GSH and 40% for Cys) by stannous chloride, demonstrating its potential role in Hg transformation and bioaccumulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The assessment of organic matter (OM) sources in sediments and soils is a key to better understand the biogeochemical cycling of carbon in aquatic environments. While traditional molecular marker-based methods have provided such information for typical two end member (allochthonous/terrestrial vs. autochthonous/microbial)-dominated systems, more detailed, biomass-specific assessments are needed for ecosystems with complex OM inputs such as tropical and sub-tropical wetlands and estuaries where aquatic macrophytes and macroalgae may play an important role as OM sources. The aim of this study was to assess the utility of a combined approach using compound specific stable carbon isotope analysis and an n-alkane based proxy (Paq) to differentiate submerged and emergent/terrestrial vegetation OM inputs to soils/sediments from a sub-tropical wetland and estuarine system, the Florida Coastal Everglades. Results show that Paq values (0.13–0.51) for the emergent/terrestrial plants were generally lower than those for freshwater/marine submerged vegetation (0.45–1.00) and that compound specific δ13C values for the n-alkanes (C23 to C31) were distinctively different for terrestrial/emergent and freshwater/marine submerged plants. While crossplots of the Paq and n-alkane stable isotope values for the C23n-alkane suggest that OM inputs are controlled by vegetation changes along the freshwater to marine transect, further resolution regarding OM input changes along this landscape was obtained through principal component analysis (PCA), successfully grouping the study sites according to the OM source strengths. The data show the potential for this n-alkane based multi-proxy approach as a means of assessing OM inputs to complex ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Personalized recommender systems aim to assist users in retrieving and accessing interesting items by automatically acquiring user preferences from the historical data and matching items with the preferences. In the last decade, recommendation services have gained great attention due to the problem of information overload. However, despite recent advances of personalization techniques, several critical issues in modern recommender systems have not been well studied. These issues include: (1) understanding the accessing patterns of users (i.e., how to effectively model users' accessing behaviors); (2) understanding the relations between users and other objects (i.e., how to comprehensively assess the complex correlations between users and entities in recommender systems); and (3) understanding the interest change of users (i.e., how to adaptively capture users' preference drift over time). To meet the needs of users in modern recommender systems, it is imperative to provide solutions to address the aforementioned issues and apply the solutions to real-world applications. ^ The major goal of this dissertation is to provide integrated recommendation approaches to tackle the challenges of the current generation of recommender systems. In particular, three user-oriented aspects of recommendation techniques were studied, including understanding accessing patterns, understanding complex relations and understanding temporal dynamics. To this end, we made three research contributions. First, we presented various personalized user profiling algorithms to capture click behaviors of users from both coarse- and fine-grained granularities; second, we proposed graph-based recommendation models to describe the complex correlations in a recommender system; third, we studied temporal recommendation approaches in order to capture the preference changes of users, by considering both long-term and short-term user profiles. In addition, a versatile recommendation framework was proposed, in which the proposed recommendation techniques were seamlessly integrated. Different evaluation criteria were implemented in this framework for evaluating recommendation techniques in real-world recommendation applications. ^ In summary, the frequent changes of user interests and item repository lead to a series of user-centric challenges that are not well addressed in the current generation of recommender systems. My work proposed reasonable solutions to these challenges and provided insights on how to address these challenges using a simple yet effective recommendation framework.^