954 resultados para Gram-negative bacteria.
Resumo:
Seven medicinal plant extracts traditionally used in Kenya, mainly for management of infectious conditions, were chosen and screened for their antibacterial activity against Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Bacillus cereus and Staphylococcus aureus) bacteria. Antibacterial activity was tested using the broth dilution method. Harrisonia abyssinica and Terminalia kilimandscharica extracts showed significant activity against Gram+ and Gram- bacteria. The methanolic extracts of T. kilimandscharica bark and H. abyssinica bark and leaves showed minimum inhibitory activity against all tested bacteria, with minimal inhibitory concentrations ranging from 25-150 mg/mL. Ajuga remota and Amaranthus hybridus, which are lethal to brine shrimp nauplii, showed significantly lower antibacterial activity than those that were relatively non-toxic.
Resumo:
Objective. To study the acquisition and cross-transmission of Staphylococcus aureus in different intensive care units (ICUs). Methods. We performed a multicenter cohort study. Six ICUs in 6 countries participated. During a 3-month period at each ICU, all patients had nasal and perineal swab specimens obtained at ICU admission and during their stay. All S. aureus isolates that were collected were genotyped by spa typing and multilocus variable-number tandem-repeat analysis typing for cross-transmission analysis. A total of 629 patients were admitted to ICUs, and 224 of these patients were found to be colonized with S. aureus at least once during ICU stay (22% were found to be colonized with methicillin-resistant S. aureus [MRSA]). A total of 316 patients who had test results negative for S. aureus at ICU admission and had at least 1 follow-up swab sample obtained for culture were eligible for acquisition analysis. Results. A total of 45 patients acquired S. aureus during ICU stay (31 acquired methicillin-susceptible S. aureus [MSSA], and 14 acquired MRSA). Several factors that were believed to affect the rate of acquisition of S. aureus were analyzed in univariate and multivariate analyses, including the amount of hand disinfectant used, colonization pressure, number of beds per nurse, antibiotic use, length of stay, and ICU setting (private room versus open ICU treatment). Greater colonization pressure and a greater number of beds per nurse correlated with a higher rate of acquisition for both MSSA and MRSA. The type of ICU setting was related to MRSA acquisition only, and the amount of hand disinfectant used was related to MSSA acquisition only. In 18 (40%) of the cases of S. aureus acquisition, cross-transmission from another patient was possible. Conclusions. Colonization pressure, the number of beds per nurse, and the treatment of all patients in private rooms correlated with the number of S. aureus acquisitions on an ICU. The amount of hand disinfectant used was correlated with the number of cases of MSSA acquisition but not with the number of cases of MRSA acquisition. The number of cases of patient-to-patient cross-transmission was comparable for MSSA and MRSA.
Resumo:
Infections of the catheter wound in peritoneal dialysis are the most frequent cause of morbility in patients who undergo this technique. There are a number of procedures for the care of the wound and it is not easy to define a single method that will guarantee good condition of the wound. In order to evaluate the behaviour of the wound related to the procedure used in their care, we studied 306 patients over 24 months, compiling socio-demographic and clinical variables. We found a high incidence of infections caused by gram-positive skin and mucous germs, with a strong correlation with the fact that the patient/family carer is a nasal carrier of staphylococcus aureus and that they appear more frequently in patients who do not remove the wound dressing in the shower. We also detected an increase in pseudomonas infections when the patient does not dry the wound with a hair-dryer
Resumo:
Pediatric parapneumonic empyema (PPE) has been increasing in several countries including Spain. Streptococcus pneumoniae is a major PPE pathogen; however, antimicrobial pretreatment before pleural fluid (PF) sampling frequently results in negative diagnostic cultures, thus greatly underestimating the contribution of pneumococci, especially pneumococci susceptible to antimicrobial agents, to PPE. The study aim was to identify the serotypes and genotypes that cause PPE by using molecular diagnostics and relate these data to disease incidence and severity. A total of 208 children with PPE were prospectively enrolled; blood and PF samples were collected. Pneumococci were detected in 79% of culture-positive and 84% of culture-negative samples. All pneumococci were genotyped by multilocus sequence typing. Serotypes were determined for 111 PPE cases; 48% were serotype 1, of 3 major genotypes previously circulating in Spain. Variance in patient complication rates was statistically significant by serotype. The recent PPE increase is principally due to nonvaccine serotypes, especially the highly invasive serotype 1.
Resumo:
Owing to increasing resistance and the limited arsenal of new antibiotics, especially against Gram-negative pathogens, carefully designed antibiotic regimens are obligatory for febrile neutropenic patients, along with effective infection control. The Expert Group of the 4(th) European Conference on Infections in Leukemia has developed guidelines for initial empirical therapy in febrile neutropenic patients, based on: i) the local resistance epidemiology; and ii) the patient's risk factors for resistant bacteria and for a complicated clinical course. An 'escalation' approach, avoiding empirical carbapenems and combinations, should be employed in patients without particular risk factors. A 'de-escalation' approach, with initial broad-spectrum antibiotics or combinations, should be used only in those patients with: i) known prior colonization or infection with resistant pathogens; or ii) complicated presentation; or iii) in centers where resistant pathogens are prevalent at the onset of febrile neutropenia. In the latter case, infection control and antibiotic stewardship also need urgent review. Modification of the initial regimen at 72-96 h should be based on the patient's clinical course and the microbiological results. Discontinuation of antibiotics after 72 h or later should be considered in neutropenic patients with fever of unknown origin who are hemodynamically stable since presentation and afebrile for at least 48 h, irrespective of neutrophil count and expected duration of neutropenia. This strategy aims to minimize the collateral damage associated with antibiotic overuse, and the further selection of resistance.
Resumo:
BACKGROUND Several evidences indicate that gut microbiota is involved in the control of host energy metabolism. OBJECTIVE To evaluate the differences in the composition of gut microbiota in rat models under different nutritional status and physical activity and to identify their associations with serum leptin and ghrelin levels. METHODS IN A CASE CONTROL STUDY, FORTY MALE RATS WERE RANDOMLY ASSIGNED TO ONE OF THESE FOUR EXPERIMENTAL GROUPS: ABA group with food restriction and free access to exercise; control ABA group with food restriction and no access to exercise; exercise group with free access to exercise and feed ad libitum and ad libitum group without access to exercise and feed ad libitum. The fecal bacteria composition was investigated by PCR-denaturing gradient gel electrophoresis and real-time qPCR. RESULTS In restricted eaters, we have found a significant increase in the number of Proteobacteria, Bacteroides, Clostridium, Enterococcus, Prevotella and M. smithii and a significant decrease in the quantities of Actinobacteria, Firmicutes, Bacteroidetes, B. coccoides-E. rectale group, Lactobacillus and Bifidobacterium with respect to unrestricted eaters. Moreover, a significant increase in the number of Lactobacillus, Bifidobacterium and B. coccoides-E. rectale group was observed in exercise group with respect to the rest of groups. We also found a significant positive correlation between the quantity of Bifidobacterium and Lactobacillus and serum leptin levels, and a significant and negative correlation among the number of Clostridium, Bacteroides and Prevotella and serum leptin levels in all experimental groups. Furthermore, serum ghrelin levels were negatively correlated with the quantity of Bifidobacterium, Lactobacillus and B. coccoides-Eubacterium rectale group and positively correlated with the number of Bacteroides and Prevotella. CONCLUSIONS Nutritional status and physical activity alter gut microbiota composition affecting the diversity and similarity. This study highlights the associations between gut microbiota and appetite-regulating hormones that may be important in terms of satiety and host metabolism.
Resumo:
SUMMARY: Iron is an essential element for nearly all organisms but it is poorly available in most environments and not sufficient to support microbial growth. Bacteria have evolved a range of strategies to acquire this important metal, the most common of these being siderophore-mediated iron uptake. Siderophores are high-affinity iron chelators which are released to the extracellular environment where they complex iron and deliver it to the bacterial cell, via specific uptake systems. The Gram-negative bacterium Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, which both contribute to the virulence of this opportunistic human pathogen. The genes responsible for pyochelin-mediated iron uptake are grouped in the P. aeruginosa chromosome. The pyochelin biosynthetic genes are organized in two divergent operons, pchDCBA and pchEFGHI, which flank the regulatory gene pchR. The fptA gene, encoding the ferric pyochelin outer membrane receptor, occurs immediately downstream of the pchEFGHI genes. The biosynthesis of the siderophore and its receptor is subjected to dual regulation enabling P. aeruginosa to respond not only to the intracellular iron level but also to the presence of the siderophore in the extracellular environment. Negative regulation is mediated by the widespread Fur protein which employs ferrous iron as a corepressor and binds to a consensus sequence in the promoter region of iron-regulated genes. Positive regulation occurs during iron starvation and requires the AraC-type transcriptional regulator PchR. This regulator, together with pyochelin, induces the expression of pyochelin biosynthesis and uptake genes via a mechanism which was partly unraveled during this thesis. A 32-bp conserved sequence element (PchR-box) was identified in promoter regions of pyochelin-controlled genes. The PchR-box in the pchR-pchDCBA intergenic region was found to be essential for the induction of the pchDCBA operon and for the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin. PchR-box mutations which interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. These results show that pyochelin is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation implies that the siderophore can enter the cytoplasm. This conclusion was corroborated by analysing the importance of known and putative pyochelin uptake genes for pyochelin-dependent gene regulation. The pyochelin receptor gene fptA is followed by three genes, fptB, fptC, and fptX, which were shown here to be co-transcribed with fPtA. While fPtX encodes an inner membrane pen-I-lease, the functions of FptB and FptC are currently unknown. FptA and FptX, which are both required for pyochelin-mediated iron uptake, were found to be also needed for pyochelin-dependent gene regulation. FptB and FptC however, were not required and their role, if any, in the uptake of the PchR effector pyochelin remains elusive. RESUME Le fer est un élément essentiel pour la quasi-totalité des organismes, mais dans la plupart des environnements, il est difficilement accessible et insuffisant à la croissance microbienne. Les bactéries ont développé de multiples stratégies pour acquérir ce précieux métal, la plus commune étant l'acquisition au moyen de sidérophores. Les sidérophores sont des petites molécules dotées d'une forte affinité pour le fer qui, une fois relâchées dans l'environnement extracellulaire, vont complexer le fer et le délivrer à la cellule bactérienne par l'intermédiaire de systèmes d'acquisition spécifiques. La bactérie Gram-négative Pseudomonas aeruginosa produit deux sidérophores, la pyoverdine et la pyochéline, qui contribuent également à la virulence de ce pathogène opportuniste. Les gènes impliqués dans l'acquisition du fer à l'aide de la pyochéline sont regroupés sur t. le chromosome de P. aeruginosa. Les gènes de biosynthèse de la pyochéline sont organisés en deux opérons divergents, pchDCBA et pchEFGHI, qui flanquent le gène régulateur pchR. Le gène fptA, codant pour le récepteur de la pyochéline dans la membrane externe, est situé immédiatement en aval des gènes pchEFGHL La biosynthèse du sidérophore et de son récepteur est soumise à une double régulation permettant à P. aeruginosa de réagir non seulement à la quantité de fer intracellulaire, mais également à la présence du sidérophore dans le milieu extracellulaire. La répression se fait par l'intermédiaire de la protéine Fur, qui nécessite le fer ferreux comme co-répresseur et se lie à une séquence consensus dans la région promotrice des gènes régulés par le fer. L'induction se produit lorsque le fer est limitant, et requiert PchR, un régulateur transcriptionnel de la famille AraC. En présence de pyochéline, ce régulateur induit l'expression des gènes de biosynthèse et du récepteur de la pyochéline par l'intermédiaire d'un mécanisme partiellement résolu dans ce travail. Une séquence conservée (PchR-box) a été identifiée dans la région promotrice des gènes régulés par la pyochéline. La PchR-box située dans la région intergénique pchR-pchDCBA s'est révélée être importante pour l'induction de l'opéron pchDCBA et la répression du gène divergent pchR. PchR a été purifiée en tant que protéine de fusion avec une protéine liant le maltose (MBP). Des expériences de gel retard ont démontré la liaison spécifique de la protéine MBP-PchR sur la PchR-box en présence, mais non en absence de pyochéline. Les mutations de la PchR-box qui ont affecté la régulation pyochéline-dépendante in vivo, ont également eu un effet sur la liaison de la protéine in vitro. Ces résultats démontrent que la pyochéline est l'effecteur intracellulaire nécessaire à la régulation par PchR. Le fait que la pyochéline extracellulaire soit capable d'activer cette régulation implique que le sidérophore entre dans le cytoplasme. Cette conclusion a été corroborée par l'évaluation du rôle des gènes connus ou putatifs de l'incorporation du fer via la pyochéline sur la régulation pyochéline-dépendente. Le gène fPtA, codant pour le récepteur de la pyochéline, est suivi de trois gènes, fptB,fptC, et fptX, co-transcrits avec,ffitA. Si sffitX code pour une perméase de la membrane interne, la fonction de FptB et FptC reste obscure. FptA et FptX, nécessaires à l'acquisition du fer par l'intermédiaire de la pyochéline, se sont également révélés être requis pour la régulation pyochéline-dépendante des gènes pchDCBA, pchEFGHI et fptABCX. FptB et FptC n'ont quant à eux vraisemblablement pas de rôle majeur à jouer, si ce n'est aucun, dans l'incorporation de la pyochéline.
Resumo:
Background: Both brucellosis and tuberculosis are chronic-debilitating systemic granulomatous diseases with a high incidence in many countries in Africa, Central and South America, the Middle East and the Indian subcontinent. Certain focal complications of brucellosis and extrapulmonary tuberculosis are very difficult to differentiate clinically, biologically and radiologically. As the conventional microbiological methods for the diagnosis of the two diseases have many limitations, as well as being time-consuming, multiplex real time PCR (M RT-PCR) could be a promising and practical approach to hasten the differential diagnosis and improve prognosis. Methodology/Principal Findings: We designed a SYBR Green single-tube multiplex real-time PCR protocol targeting bcsp31 and the IS711 sequence detecting all pathogenic species and biovars of Brucella genus, the IS6110 sequence detecting Mycobacterium genus, and the intergenic region senX3-regX3 specifically detecting Mycobacterium tuberculosis complex. The diagnostic yield of the M RT-PCR with the three pairs of resultant amplicons was then analyzed in 91 clinical samples corresponding to 30 patients with focal complications of brucellosis, 24 patients with extrapulmonary tuberculosis, and 36 patients (Control Group) with different infectious, autoimmune or neoplastic diseases. Thirty-five patients had vertebral osteomyelitis, 21 subacute or chronic meningitis or meningoencephalitis, 13 liver or splenic abscess, eight orchiepididymitis, seven subacute or chronic arthritis, and the remaining seven samples were from different locations. Of the three pairs of amplicons (senX3-regX3+ bcsp3, senX3-regX3+ IS711 and IS6110+ IS711) only senX3-regX3+ IS711 was 100% specific for both the Brucella genus and M. tuberculosis complex. For all the clinical samples studied, the overall sensitivity, specificity, and positive and negative predictive values of the M RT-PCR assay were 89.1%, 100%, 85.7% and 100%, respectively, with an accuracy of 93.4%, (95% CI, 88.3—96.5%). Conclusions/Significance: In this study, a M RT-PCR strategy with species-specific primers based on senX3-regX3+IS711 sequences proved to be a sensitive and specific test, useful for the highly efficient detection of M. tuberculosis and Brucella spp in very different clinical samples. It thus represents an advance in the differential diagnosis between some forms of extrapulmonary tuberculosis and focal complications of brucellosis.
Resumo:
Real-time PCR is a widely used tool for the diagnosis of many infectious diseases. However, little information exists about the influences of the different factors involved in PCR on the amplification efficiency. The aim of this study was to analyze the effect of boiling as the DNA preparation method on the efficiency of the amplification process of real-time PCR for the diagnosis of human brucellosis with serum samples. Serum samples from 10 brucellosis patients were analyzed by a SYBR green I LightCycler-based real-time PCR and by using boiling to obtain the DNA. DNA prepared by boiling lysis of the bacteria isolated from serum did not prevent the presence of inhibitors, such as immunoglobulin G (IgG), which were extracted with the template DNA. To identify and confirm the presence of IgG, serum was precipitated to separate and concentrate the IgG and was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. The use of serum volumes above 0.6 ml completely inhibited the amplification process. The inhibitory effect of IgG in serum samples was not concentration dependent, and it could be eliminated by diluting the samples 1/10 and 1/20 in water. Despite the lack of the complete elimination of the IgG from the template DNA, boiling does not require any special equipment and it provides a rapid, reproducible, and cost-effective method for the preparation of DNA from serum samples for the diagnosis of brucellosis.
Resumo:
Lactococcus garvieae is a Gram-positive, catalase negative coccus arranged in pairs or short chains, well-known as a fish pathogen. We report a case of Infective Endocarditis (IE) by L. garvieae in a native valve from a 68-year-old male with unknown history of contact with raw fish and an extensive history of heart disease. This case highlights the reliability of MALDI-TOF MS compared to conventional methods in the identification of rare microorganisms like this.
Resumo:
We present the first evaluation of a novel molecular assay, the Speed-oligo Direct Mycobacterium tuberculosis (SO-DMT) assay, which is based on PCR combined with a dipstick for the detection of mycobacteria and the specific identification of M. tuberculosis complex (MTC) in respiratory specimens. A blind evaluation was carried out in two stages: first, under experimental conditions on convenience samples comprising 20 negative specimens, 44 smear- and culture-positive respiratory specimens, and 11 sputa inoculated with various mycobacterium-related organisms; and second, in the routine workflow of 566 fresh respiratory specimens (4.9% acid-fast bacillus [AFB] smear positives, 7.6% MTC positives, and 1.8% nontuberculous mycobacteria [NTM] culture positives) from two Mycobacterium laboratories. SO-DMT assay showed no reactivity in any of the mycobacterium-free specimens or in those with mycobacterium-related organisms. Compared to culture, the sensitivity in the selected smear-positive specimens was 0.91 (0.92 for MTC and 0.90 for NTM), and there was no molecular detection of NTM in a tuberculosis case or vice versa. With respect to culture and clinical data, the sensitivity, specificity, and positive and negative predictive values for the SO-DMT system in routine specimens were 0.76 (0.93 in smear positives [1.0 for MTC and 0.5 for NTM] and 0.56 in smear negatives [0.68 for MTC and 0.16 for NTM]), 0.99, 0.85 (1.00 in smear positives and 0.68 in smear negatives), and 0.97, respectively. Molecular misidentification of NTM cases occurred when testing 2 gastric aspirates from two children with clinically but not microbiologically confirmed lung tuberculosis. The SO-DMT assay appears to be a fast and easy alternative for detecting mycobacteria and differentiating MTC from NTM in smear-positive respiratory specimens.
Resumo:
We investigated the impact of the piperacillin-tazobactam MIC in the outcome of 39 bloodstream infections due to extended-spectrum-β-lactamase-producing Escherichia coli. All 11 patients with urinary tract infections survived, irrespective of the MIC. For other sources, 30-day mortality was lower for isolates with a MIC of ≤ 2 mg/liter than for isolates with a higher MIC (0% versus 41.1%; P = 0.02).
Resumo:
A 51 year old man presented to the department of Dermatology, Regional University Hospital of Málaga, Málaga, Spain, in May 2013, with remarkable lesions on the perineal, perianal and gluteal regions reaching the top of the lower limbs, which he had first noted two years earlier. The physical examination revealed large erythematous-brownish plaques with a granulomatous appearance, polypoid lesions and areas of ulceration. In addition, Mycobacterium tuberculosis culture and serum QuantiFERON® TB Gold were negative. The patient was diagnosed to have metastatic Crohn’s disease which is an uncommon complication of Crohn’s disease.
Resumo:
BACKGROUND Nucleic acid amplification tests are increasingly used for the rapid diagnosis of tuberculosis. We undertook a comparative study of the efficiency and diagnostic yield of a real-time PCR senX3-regX3 based assay versus the classical IS6110 target and the new commercial methods. METHODS This single-blind prospective comparative study included 145 consecutive samples: 76 from patients with culture-confirmed tuberculosis (86.8% pulmonary and 13.2% extrapulmonary tuberculosis: 48.7% smear-positive and 51.3% smear-negative) and 69 control samples (24 from patients diagnosed with non-tuberculous mycobacteria infections and 45 from patients with suspected tuberculosis which was eventually ruled out). All samples were tested by two CE-marked assays (Xpert®MTB/RIF and AnyplexTM plus MTB/NTM) and two in-house assays targeting senX3-regX3 and the IS6110 gene. RESULTS The detection limit ranged from 1.00E+01 fg for Anyplex, senX3-regX3 and IS6110 to 1.00E+04 fg for Xpert. All three Xpert, senX3-regX3 and IS6110 assays detected all 37 smear-positive cases. Conversely, Anyplex was positive in 34 (91.9%) smear-positive cases. In patients with smear-negative tuberculosis, differences were observed between the assays; Xpert detected 22 (56.41%) of the 39 smear-negative samples, Anyplex 24 (61.53%), senX3-regX3 28 (71.79%) and IS6110 35 (89.74%). Xpert and senX3-regX3 were negative in all control samples; however, the false positive rate was 8.7% and 13% for Anyplex and IS6110, respectively. The overall sensitivity was 77.6%, 85.7%, 77.3% and 94.7% and the specificity was 100%, 100%, 90.8% and 87.0% for the Xpert, senX3-regX3, Anyplex and IS6110 assays, respectively. CONCLUSION Real-time PCR assays targeting IS6110 lack the desired specificity. The Xpert MTB/RIF and in-house senX3-regX3 assays are both sensitive and specific for the detection of MTBC in both pulmonary and extrapulmonary samples. Therefore, the real time PCR senX3-regX3 based assay could be a useful and complementary tool in the diagnosis of tuberculosis.
Resumo:
PURPOSE: The recent increase in drug-resistant micro-organisms complicates the management of hospital-acquired bloodstream infections (HA-BSIs). We investigated the epidemiology of HA-BSI and evaluated the impact of drug resistance on outcomes of critically ill patients, controlling for patient characteristics and infection management. METHODS: A prospective, multicentre non-representative cohort study was conducted in 162 intensive care units (ICUs) in 24 countries. RESULTS: We included 1,156 patients [mean ± standard deviation (SD) age, 59.5 ± 17.7 years; 65 % males; mean ± SD Simplified Acute Physiology Score (SAPS) II score, 50 ± 17] with HA-BSIs, of which 76 % were ICU-acquired. Median time to diagnosis was 14 [interquartile range (IQR), 7-26] days after hospital admission. Polymicrobial infections accounted for 12 % of cases. Among monomicrobial infections, 58.3 % were gram-negative, 32.8 % gram-positive, 7.8 % fungal and 1.2 % due to strict anaerobes. Overall, 629 (47.8 %) isolates were multidrug-resistant (MDR), including 270 (20.5 %) extensively resistant (XDR), and 5 (0.4 %) pan-drug-resistant (PDR). Micro-organism distribution and MDR occurrence varied significantly (p < 0.001) by country. The 28-day all-cause fatality rate was 36 %. In the multivariable model including micro-organism, patient and centre variables, independent predictors of 28-day mortality included MDR isolate [odds ratio (OR), 1.49; 95 % confidence interval (95 %CI), 1.07-2.06], uncontrolled infection source (OR, 5.86; 95 %CI, 2.5-13.9) and timing to adequate treatment (before day 6 since blood culture collection versus never, OR, 0.38; 95 %CI, 0.23-0.63; since day 6 versus never, OR, 0.20; 95 %CI, 0.08-0.47). CONCLUSIONS: MDR and XDR bacteria (especially gram-negative) are common in HA-BSIs in critically ill patients and are associated with increased 28-day mortality. Intensified efforts to prevent HA-BSIs and to optimize their management through adequate source control and antibiotic therapy are needed to improve outcomes.