871 resultados para Glucose transporter 4
Resumo:
A second isoform of the human vesicular monoamine transporter (hVMAT) has been cloned from a pheochromocytoma cDNA library. The contribution of the two transporter isoforms to monoamine storage in human neuroendocrine tissues was examined with isoform-specific polyclonal antibodies against hVMAT1 and hVMAT2. Central, peripheral, and enteric neurons express only VMAT2. VMAT1 is expressed exclusively in neuroendocrine, including chromaffin and enterochromaffin, cells. VMAT1 and VMAT2 are coexpressed in all chromaffin cells of the adrenal medulla. VMAT2 alone is expressed in histamine-storing enterochromaffin-like cells of the oxyntic mucosa of the stomach. The transport characteristics and pharmacology of each VMAT isoform have been directly compared after expression in digitonin-permeabilized fibroblastic (CV-1) cells, providing information about substrate feature recognition by each transporter and the role of vesicular monoamine storage in the mechanism of action of psychopharmacologic and neurotoxic agents in human. Serotonin has a similar affinity for both transporters. Catecholamines exhibit a 3-fold higher affinity, and histamine exhibits a 30-fold higher affinity, for VMAT2. Reserpine and ketanserin are slightly more potent inhibitors of VMAT2-mediated transport than of VMAT1-mediated transport, whereas tetrabenazine binds to and inhibits only VMAT2. N-methyl-4-phenylpyridinium, phenylethylamine, amphetamine, and methylenedioxymethamphetamine are all more potent inhibitors of VMAT2 than of VMAT1, whereas fenfluramine is a more potent inhibitor of VMAT1-mediated monamine transport than of VMAT2-mediated monoamine transport. The unique distributions of hVMAT1 and hVMAT2 provide new markers for multiple neuroendocrine lineages, and examination of their transport properties provides mechanistic insights into the pharmacology and physiology of amine storage in cardiovascular, endocrine, and central nervous system function.
Resumo:
The primary metabolic characteristic of malignant cells is an increased uptake of glucose and its anaerobic metabolism. We studied the expression and function of the glucose transporters in human breast cancer cell lines and analyzed their expression in normal and neoplastic primary human breast tissue. Hexose uptake assays and immunoblotting experiments revealed that the breast carcinoma cell lines MCF-7 and MDA-468 express the glucose transporters GLUT1 and GLUT2, isoforms expressed in both normal and neoplastic breast tissue. We also found that the breast cancer cell lines transport fructose and express the fructose transporter GLUT5. Immunolocalization studies revealed that GLUT5 is highly expressed in vivo in human breast cancer but is absent in normal human breast tissue. These findings indicate that human breast cancer cells have a specialized capacity to transport fructose, a metabolic substrate believed to be used by few human tissues. Identification of a high-affinity fructose transporter on human breast cancer cells opens opportunities to develop novel strategies for early diagnosis and treatment of breast cancer.
Resumo:
Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.
Resumo:
Chronic exposure of HIT-T15 beta cells to elevated glucose concentrations leads to decreased insulin gene transcription. The reduction in expression is accompanied by diminished binding of a glucose-sensitive transcription factor (termed GSTF) that interacts with two (A+T)-rich elements within the 5' flanking control region of the insulin gene. In this study we examined whether GSTF corresponds to the recently cloned insulin gene transcription factor STF-1, a homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and pancreas. We found that an affinity-purified antibody recognizing STF-1 supershifted the GSTF activator complex formed from HIT-T15 extracts. In addition, we demonstrated a reduction in STF-1 mRNA and protein levels that closely correlated with the change in GSTF binding in HIT-T15 cells chronically cultured under supraphysiologic glucose concentrations. The reduction in STF-1 expression in these cells could be accounted for by a change in the rate of STF-1 gene transcription, suggesting a posttranscriptional control mechanism. In support of this hypothesis, no STF-1 mRNA accumulated in HIT-T15 cells passaged in 11.1 mM glucose. The only RNA species detected was a 6.4-kb STF-1 RNA species that hybridized with 5' and 3' STF-1-specific cDNA probes. We suggest that the 6.4-kb RNA represents an STF-1 mRNA precursor and that splicing of this RNA is defective in these cells. Overall, this study suggests that reduced expression of a key transcriptional regulatory factor, STF-1, contributes to the decrease in insulin gene transcription in HIT-T15 cells chronically cultured in supraphysiologic glucose concentration.
Resumo:
Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.
Resumo:
Ftalocianina de alumínio-cloro (AlClPc) é um fotossensibilizador de segunda geração em terapia fotodinâmica (TFD) caracterizado por seu caráter anfifílico e tendência de auto-agregação em meio aquoso, o que prejudica seu potencial de aplicação. O aCHC é um substrato de transportadores de monocarboxilato (MCT) superexpresso em células de MCF-7. Objetivando a solubilização da AlClPc e aumento de internalização em tecidos neoplásicos nos propomos aqui o uso de DSPC e DOPC em diferentes proporções para formar vesículas lipidicas mistas (LV) na presença de aCHC como sistemas veiculadores de fármaco. Lv foi preparado pelo método de injeção etanólica e formou vesículas de dimensões nanométricas (aproximadamente 100 nm) com bom índice de polidispersão, valores negativos de potencial zeta e estáveis em meio aquoso por mais de 50 dias. AlClPc se complexou com o fosfato das LV o que conferiu uma localização interfacial às moléculas de AlClPc como demonstrado pelos resultados de supressão de fluorescência. Medidas de anisotropia, fluorescência estática e resolvida no tempo corroboram com estes resultados e demonstram que a auto-agregação da AlClPc ocorre mesmo em lipossomas. Entretanto, a veiculação da AlClPc por LV em carcinoma de células escamosas oral (OSCC) levou a um processo de desagregação demonstrado por (FLIM). Este incrível comportamento é novo e aumenta o conhecimento científico sobre o mecanismo intracelular de ação de fotossensibilizadores em TFD. Em TFD, ambos os sistemas LVIII+AlClPc e LVIII+AlClPc+aCHC não apresentaram toxicidade no escuro no período de incubação de 3 h com as concentrações de lipídios, AlClPc e aCHC iguais a 0,15 mmol/L, 0,5 umol/L e 10,0 umol/L, respectivamente. De maneira inesperada, o sistema LVIII+AlClPc foi mais eficiente em TFD que o sistema LVIII+AlClPc+aCHC, devido ao caráter antioxidante do aCHC. Estes resultados abrem uma nova perspectiva do potencial uso de LV-AlClPc para o tratamento fotodinâmico.
Resumo:
Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae.
Resumo:
IRT1 and IRT2 are members of the Arabidopsis ZIP metal transporter family that are specifically induced by iron deprivation in roots and act as heterologous suppressors of yeast mutations inhibiting iron and zinc uptake. Although IRT1 and IRT2 are thought to perform redundant functions as root-specific metal transporters, insertional inactivation of the IRT1 gene alone results in typical symptoms of iron deficiency causing severe leaf chlorosis and lethality in soil. The irt1 mutation is characterized by specific developmental defects, including a drastic reduction of chloroplast thylakoid stacking into grana and lack of palisade parenchyma differentiation in leaves, reduced number of vascular bundles in stems, and irregular patterns of enlarged endodermal and cortex cells in roots. Pulse labeling with 59Fe through the root system shows that the irt1 mutation reduces iron accumulation in the shoots. Short-term labeling with 65Zn reveals no alteration in spatial distribution of zinc, but indicates a lower level of zinc accumulation. In comparison to wild-type, the irt1 mutant responds to iron and zinc deprivation by altered expression of certain zinc and iron transporter genes, which results in the activation of ZIP1 in shoots, reduction of ZIP2 transcript levels in roots, and enhanced expression of IRT2 in roots. These data support the conclusion that IRT1 is an essential metal transporter required for proper development and regulation of iron and zinc homeostasis in Arabidopsis.
Resumo:
BACKGROUND Gastrointestinal (GI) complications often delay recovery after radical cystectomy with urinary diversion. The authors investigated if perioperative administration of a potassium-enriched, chloride-depleted 5% glucose solution (G5K) accelerates recovery of GI function. METHODS This randomized, parallel-group, single-center double-blind trial included 44 consecutive patients undergoing radical cystectomy and pelvic lymph node dissection with urinary diversion. Patients were randomized to receive either a G5K (G5K group) solution or a Ringer's maleate solution (control group). Fluid management aimed for a zero fluid balance. Primary endpoint was time to first defecation. Secondary endpoints were time to normal GI function, need for electrolyte substitution, and renal dysfunction. RESULTS Time to first defecation was not significantly different between groups (G5K group, 93 h [19 to 168 h] and control group, 120 h [43 to 241 h]); estimator of the group difference, -16 (95% CI, -38 to 6); P = 0.173. Return of normal GI function occurred faster in the G5K group than in the control group (median, 138 h [range, 54 to 262 h] vs. 169 h [108 to 318 h]); estimator of the group difference, -38 (95% CI, -74 to -12); P = 0.004. Potassium and magnesium were less frequently substituted in the G5K group (13.6 vs. 54.5% [P = 0.010] and 18.2 vs. 77.3% [P < 0.001]), respectively. The incidence of renal dysfunction (Risk, Injury, Failure, Loss and End-stage kidney disease stage "risk") at discharge was 9.1% in the G5K group and 4.5% in the control group; P = 1.000. CONCLUSIONS Perioperative administration of a G5K did not enhance first defecation, but may accelerate recovery of normal GI function, and reduces potassium and magnesium substitution after radical cystectomy and urinary diversion.
Resumo:
"June 1979."
Resumo:
Pyrithiamine-induced thiamine deficiency (TD) is a well-established model of Wernicke's encephalopathy in which a glutamate-mediated excitotoxic mechanism may play an important role in determining selective vulnerability. In order to examine this possibility, cultured astrocytes were exposed to TD and effects on glutamate transport and metabolic function were studied. TD led to decreases in cellular levels of thiamine and thiamine diphosphate (TDP) after 24 h of treatment and decreased activities of the TDP-dependent enzymes alpha-ketoglutarate dehydrogenase and transketolase after 4 and 7 days, respectively. TD treatment for 10 days led to a reversible decrease in the uptake of [H-3]-D-aspartate, a nonmetabolizable analogue of glutamate. Kinetic analysis revealed that the uptake inhibition was caused by a 47% decrease in the V-max for uptake of [H-3]-D-aspartate, with no change in the K-m value. Immunoblotting showed that this decrease in uptake was due to an 81% downregulation of the astrocyte-specific GLAST glutamate transporter. Loss of uptake activity and GLAST protein were blocked by treatment with the protein kinase C inhibitor H7, while exposure to DCG IV, a group II metabotropic glutamate receptor (mGluR) agonist, resulted in improvement of [H-3]-D-aspartate uptake and a partial reversal of transporter downregulation. These results are consistent with our recent in vivo findings of a loss of astrocytic glutamate transporters in TD and provide evidence that TD conditions may increase phosphorylation. of GLAST, contributing to its downregulation. In addition, manipulation of group II mGluR activity may provide an important strategy in the treatment of this disorder. (C) 2003 Wiley-Liss, Inc.
Resumo:
Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.
Resumo:
OBJECTIVE- Diabetes, a major health problem worldwide, increases the risk of cardiovascular disease and its associated mortality. Evidence of the overall benefits of lipid modification in this area is needed. RESEARCH DESIGN AND METHODS- The Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) trial showed that cholesterol-lowering treatment with pravastatin reduced mortality and coronary heart disease (CHD) events in 9,014 patients aged 31-75 years with CHD and total cholesterol 4.0-7.0 mmol/l. We measured the effects of pravastatin therapy, 40 mg/day over 6.0 years, on the risk of CHD death or nonfatal myocardial infarction and other cardiovascular outcomes in 1,077 LIPID patients with diabetes and 940 patients with impaired fasting glucose (IFG). RESULTS- in patients allocated to placebo, the risk of a major CHD event was 61% higher in patients with diabetes and 23% higher in the IFG group than in patients with normal fasting glucose, and the risk of any cardiovascular event was 37% higher in the diabetic group and 19% higher in the IFG group. Pravastatin therapy reduced the risk of a major CHD event overall from 15.9 to 12.3% (relative risk reduction [RRR] 24%, P < 0.001) and from 23.4 to 19.6% in the diabetic group (19%, P = 0.11); in the diabetic group, the reduction was not significantly different from the reductions in the other groups. Pravastatin reduced the risk of any cardiovascular event from 52.7 to 45.2% (21%, P < 0.008) in patients With diabetes and from 45.7 to 37.1% (26%, P = 0.003) in the IFG group. Pravastatin reduced the risk of stroke from 9.9 to 6.3% in the diabetic group (RRR 39%, Cl 7-61%, P = 0.02) and from 5.4 to 3.4% in the IFG group (RRR 42%, Cl -9 to 69%, P = 0.09). Pravastatin did not reduce the incidence of diabetes. Over 6 years, pravastatin therapy prevented one major,CHD event (CHD death or nonfatal myocardial infarction) in 23 patients with IFG and 18 patients with diabetes. A meta-analysis of other major trials confirmed the high absolute risks of diabetes and IFG and the absolute benefits of statin therapy in these patients. CONCLUSIONS- Cholesterol-lowering treatment with pravastatin therapy prevents cardiovascular events, including stroke, in patients with diabetes or IFG and established CHD.
Resumo:
Purpose: To determine whether the localization of retinal glutamate transporters is affected by retinal ischaemia and whether their ability to transport glutamate decreases with the progression of ischemic retinal and optic nerve degeneration. Methods: Retinal ischemia was induced in rats by acutely increasing the intraocular pressure (IOP, 110 mmHg/60 min). Reperfusion was permitted for periods up to 60 days post-ischemia. Functional evaluation was performed by monitoring the pupil light reflexes (PLRs) and electroretinograms (flash, flicker ERG and oscillatory potentials). Glutamate transporter localization and D-aspartate (glutamate analogue) uptake were assessed by immunohistochemistry. Results: Intense immunoreactivity for the retinal glutamate transporters (GLAST, GLT1, EAAC1 and EAAT5) was observed at all time points after the insult, despite severe retinal degeneration. D-aspartate was also normally accumulated in the ischemic retinas. Ten days post-operatively the PLR ratio (ratio = indirect/direct PLR = 34 +/- 7(.)5%) was significantly less than the pre-operative value (pre-op = 76(.)7 +/- 2 (.)6%, p < 0(.)05). However, 25 and 35 days post-operatively PLR ratios did not differ significantly from pre-operative values (44(.)4 +/- 6(.)9 and 53(.)8 +/- 9(.)6%, p > 0(.)05). Forty-five and 60 days post-operatively the PLR ratio declined again and was significantly lower than the pre-operative value (33(.)8 + 8(.)7 and 26(.)2 + 8(.)9%, p < 0(.)05). Statistical analysis revealed that all tested ERG components had significantly higher values at 32, but not at 42 and 58 days post-operatively when compared to the first time point recorded post-operatively (10 days). Conclusions: While retinal glutamate transport is compromised during an acute ischemic insult, consequent retinal recovery and degeneration are not due to a change in the excitatory amino acid transporter localization or D-aspartate (glutamate analogue) uptake. Rat retina and optic nerve are capable of spontaneous, but temporary, functional recovery after an acute ischemic insult. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
1 The aim was to test the hypothesis that nitric oxide ( NO) donor drugs can inhibit the 5-hydroxytryptamine (5-HT) transporter, SERT. 2 The NO donors, MAHMA/NO ( a NONOate; (Z)-1-[N-methyl-N-[6-(N-methylammoniohexyl)amino]]diazen- 1-ium-1,2-diolate), SIN-1 ( a sydnonimine; 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride), FK409 ( an oxime; (+/-)-(4-ethyl-2E-(hydroxyimino)-5-nitro-3E-hexenamide)) and peroxynitrite, but not Angeli's salt ( source of nitroxyl anion) or sodium nitrite, caused concentration-dependent inhibition of the specific uptake of [H-3]- 5-HT in COS-7 cells expressing human SERT. 3 Superoxide dismutase (150 U ml(-1)) plus catalase ( 1200 U ml(-1)), used to remove superoxide and hence prevent peroxynitrite formation, prevented the inhibitory effect of SIN-1 ( which generates superoxide) but not of MAHMA/NO or FK409. 4 The inhibitory effects of the NO donors were not affected by the free radical scavenger, hydroxocobalamin (1 mM) or the guanylate cyclase inhibitor, ODQ (1H-[ 1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one; 3 muM). 5 L-Cysteine ( 1 mM; source of excess thiol residues) abolished or markedly reduced the inhibitory effects of MAHMA/NO, SIN-1, FK409 and peroxynitrite. 6 It is concluded that inhibition of SERT by the NO donors cannot be attributed exclusively to NO free radical nor to nitroxyl anion. It does not involve guanosine-3',5'-cyclic monophosphate, but may involve nitrosation of cysteine residues on the SERT protein. Peroxynitrite mediates the effect of SIN-1, but not the other drugs. 7 Data in mice with hypoxic pulmonary hypertension suggest that SERT inhibitors may attenuate pulmonary vascular remodelling. Thus, NO donors may be useful in pulmonary hypertension, not only as vasodilators, but also because they inhibit SERT, provided they display this effect in vivo at appropriate doses.