975 resultados para Global Processing Speed
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies.
Resumo:
In the present thesis, a new methodology of diagnosis based on advanced use of time-frequency technique analysis is presented. More precisely, a new fault index that allows tracking individual fault components in a single frequency band is defined. More in detail, a frequency sliding is applied to the signals being analyzed (currents, voltages, vibration signals), so that each single fault frequency component is shifted into a prefixed single frequency band. Then, the discrete Wavelet Transform is applied to the resulting signal to extract the fault signature in the frequency band that has been chosen. Once the state of the machine has been qualitatively diagnosed, a quantitative evaluation of the fault degree is necessary. For this purpose, a fault index based on the energy calculation of approximation and/or detail signals resulting from wavelet decomposition has been introduced to quantify the fault extend. The main advantages of the developed new method over existing Diagnosis techniques are the following: - Capability of monitoring the fault evolution continuously over time under any transient operating condition; - Speed/slip measurement or estimation is not required; - Higher accuracy in filtering frequency components around the fundamental in case of rotor faults; - Reduction in the likelihood of false indications by avoiding confusion with other fault harmonics (the contribution of the most relevant fault frequency components under speed-varying conditions are clamped in a single frequency band); - Low memory requirement due to low sampling frequency; - Reduction in the latency of time processing (no requirement of repeated sampling operation).
Resumo:
Recently, global meat market is facing several dramatic changes due to shifting in diet and life style, consumer demands, and economical considerations. Firstly, there was a tremendous increase in the poultry meat demand. Furthermore, current forecast and projection studies pointed out that the expansion of the poultry market will continue in future. In response to this demand, there was a great success to increase growth rate of meat-type chickens in the last few decades in order to optimize the production of poultry meat. Accordingly, the increase of growth rate induced the appearance of several muscle abnormalities such as pale-soft-exudative (PSE) syndrome and deep-pectoral-myopathy (DPM) and more recently white striping and wooden breast. Currently, there is growing interest in meat industry to understand how much the magnitude of the effect of these abnormalities on different quality traits for raw and processed meat. Therefore, the major part of the research activities during the PhD project was dedicated to evaluate the different implications of recent muscle abnormalities such as white striping and wooden breast on meat quality traits and their incidence under commercial conditions. Generally, our results showed that the incidence of these muscle abnormalities was very high under commercial conditions and had great adverse impact on meat quality traits. Secondly, there is growing market share of convenient, healthy, and functional processed meat products. Accordingly, the remaining part of research activities of the PhD project was dedicated to evaluate the possibility to formulate processed meat products with higher perceived healthy profile such as phosphate free-marinated chicken meat and low sodium-marinated rabbit meat products. Overall all findings showed that sodium bicarbonate can be considered as promising component to replace phosphates in meat products, while potassium chloride under certain conditions was successfully used to produce low marinated rabbit meat products.
Resumo:
I Big Data hanno forgiato nuove tecnologie che migliorano la qualità della vita utilizzando la combinazione di rappresentazioni eterogenee di dati in varie discipline. Occorre, quindi, un sistema realtime in grado di computare i dati in tempo reale. Tale sistema viene denominato speed layer, come si evince dal nome si è pensato a garantire che i nuovi dati siano restituiti dalle query funcions con la rapidità in cui essi arrivano. Il lavoro di tesi verte sulla realizzazione di un’architettura che si rifaccia allo Speed Layer della Lambda Architecture e che sia in grado di ricevere dati metereologici pubblicati su una coda MQTT, elaborarli in tempo reale e memorizzarli in un database per renderli disponibili ai Data Scientist. L’ambiente di programmazione utilizzato è JAVA, il progetto è stato installato sulla piattaforma Hortonworks che si basa sul framework Hadoop e sul sistema di computazione Storm, che permette di lavorare con flussi di dati illimitati, effettuando l’elaborazione in tempo reale. A differenza dei tradizionali approcci di stream-processing con reti di code e workers, Storm è fault-tolerance e scalabile. Gli sforzi dedicati al suo sviluppo da parte della Apache Software Foundation, il crescente utilizzo in ambito di produzione di importanti aziende, il supporto da parte delle compagnie di cloud hosting sono segnali che questa tecnologia prenderà sempre più piede come soluzione per la gestione di computazioni distribuite orientate agli eventi. Per poter memorizzare e analizzare queste moli di dati, che da sempre hanno costituito una problematica non superabile con i database tradizionali, è stato utilizzato un database non relazionale: HBase.
Resumo:
In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.
Resumo:
Humankind today is challenged by numerous threats brought about by the speed and scope of global change dynamics. A concerted and informed approach to solutions is needed to face the severity and magnitude of current development problems. Generating shared knowledge is a key to addressing global challenges. This requires developing the ability to cross multiple borders wherever radically different understandings of issues such as health and environmental sanitation, governance and conflict, livelihood options and globalisation, and natural resources and development exist. Global Change and Sustainable Development presents 36 peer-reviewed articles written by interdisciplinary teams of authors who reflected on results of development-oriented research conducted from 2001 to 2008. Scientific activities were – and continue to be – carried out in partnerships involving people and institutions in the global North, South and East, guided by principles of sustainability. The articles seek to inform solutions for mitigating, or adapting to, the negative impacts of global dynamics in the social, political, ecological, institutional and economic spheres.
Resumo:
The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)
Resumo:
In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.
Resumo:
The group analysed some syntactic and phonological phenomena that presuppose the existence of interrelated components within the lexicon, which motivate the assumption that there are some sublexicons within the global lexicon of a speaker. This result is confirmed by experimental findings in neurolinguistics. Hungarian speaking agrammatic aphasics were tested in several ways, the results showing that the sublexicon of closed-class lexical items provides a highly automated complex device for processing surface sentence structure. Analysing Hungarian ellipsis data from a semantic-syntactic aspect, the group established that the lexicon is best conceived of being as split into at least two main sublexicons: the store of semantic-syntactic feature bundles and a separate store of sound forms. On this basis they proposed a format for representing open-class lexical items whose meanings are connected via certain semantic relations. They also proposed a new classification of verbs to account for the contribution of the aspectual reading of the sentence depending on the referential type of the argument, and a new account of the syntactic and semantic behaviour of aspectual prefixes. The partitioned sets of lexical items are sublexicons on phonological grounds. These sublexicons differ in terms of phonotactic grammaticality. The degrees of phonotactic grammaticality are tied up with the problem of psychological reality, of how many degrees of this native speakers are sensitive to. The group developed a hierarchical construction network as an extension of the original General Inheritance Network formalism and this framework was then used as a platform for the implementation of the grammar fragments.
Resumo:
Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.
Resumo:
OBJECTIVE: To investigate whether autistic subjects show a different pattern of neural activity than healthy individuals during processing of faces and complex patterns. METHODS: Blood oxygen level-dependent (BOLD) signal changes accompanying visual processing of faces and complex patterns were analyzed in an autistic group (n = 7; 25.3 [6.9] years) and a control group (n = 7; 27.7 [7.8] years). RESULTS: Compared with unaffected subjects, autistic subjects demonstrated lower BOLD signals in the fusiform gyrus, most prominently during face processing, and higher signals in the more object-related medial occipital gyrus. Further signal increases in autistic subjects vs controls were found in regions highly important for visual search: the superior parietal lobule and the medial frontal gyrus, where the frontal eye fields are located. CONCLUSIONS: The cortical activation pattern during face processing indicates deficits in the face-specific regions, with higher activations in regions involved in visual search. These findings reflect different strategies for visual processing, supporting models that propose a predisposition to local rather than global modes of information processing in autism.
Resumo:
The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.
Resumo:
Inexpensive, commercial available off-the-shelf (COTS) Global Positioning Receivers (GPS) have typical accuracy of ±3 meters when augmented by the Wide Areas Augmentation System (WAAS). There exist applications that require position measurements between two moving targets. The focus of this work is to explore the viability of using clusters of COTS GPS receivers for relative position measurements to improve their accuracy. An experimental study was performed using two clusters, each with five GPS receivers, with a fixed distance of 4.5 m between the clusters. Although the relative position was fixed, the entire system of ten GPS receivers was on a mobile platform. Data was recorded while moving the system over a rectangular track with a perimeter distance of 7564 m. The data was post processed and yielded approximately 1 meter accuracy for the relative position vector between the two clusters.