986 resultados para Girometti, Giuseppe.
Resumo:
We present a method to enhance fault localization for software systems based on a frequent pattern mining algorithm. Our method is based on a large set of test cases for a given set of programs in which faults can be detected. The test executions are recorded as function call trees. Based on test oracles the tests can be classified into successful and failing tests. A frequent pattern mining algorithm is used to identify frequent subtrees in successful and failing test executions. This information is used to rank functions according to their likelihood of containing a fault. The ranking suggests an order in which to examine the functions during fault analysis. We validate our approach experimentally using a subset of Siemens benchmark programs.
Resumo:
Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.
Resumo:
The Konstanz Information Miner is a modular environment which enables easy visual assembly and interactive execution of a data pipeline. It is designed as a teaching, research and collaboration platform, which enables easy integration of new algorithms, data manipulation or visualization methods as new modules or nodes. In this paper we describe some of the design aspects of the underlying architecture and briefly sketch how new nodes can be incorporated.
Resumo:
This paper focuses on active networks applications and in particular on the possible interactions among these applications. Active networking is a very promising research field which has been developed recently, and which poses several interesting challenges to network designers. A number of proposals for e±cient active network architectures are already to be found in the literature. However, how two or more active network applications may interact has not being investigated so far. In this work, we consider a number of applications that have been designed to exploit the main features of active networks and we discuss what are the main benefits that these applications may derive from them. Then, we introduce some forms of interaction including interference and communications among applications, and identify the components of an active network architecture that are needed to support these forms of interaction. We conclude by presenting a brief example of an active network application exploiting the concept of interaction.
Resumo:
New conceptual ideas on network architectures have been proposed in the recent past. Current store-andforward routers are replaced by active intermediate systems, which are able to perform computations on transient packets, in a way that results very helpful for developing and deploying new protocols in a short time. This paper introduces a new routing algorithm, based on a congestion metric, and inspired by the behavior of ants in nature. The use of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized algorithm capable of adapting quickly to changing conditions.
Resumo:
Active Networks can be seen as an evolution of the classical model of packet-switched networks. The traditional and ”passive” network model is based on a static definition of the network node behaviour. Active Networks propose an “active” model where the intermediate nodes (switches and routers) can load and execute user code contained in the data units (packets). Active Networks are a programmable network model, where bandwidth and computation are both considered shared network resources. This approach opens up new interesting research fields. This paper gives a short introduction of Active Networks, discusses the advantages they introduce and presents the research advances in this field.
Resumo:
In the recent years, the unpredictable growth of the Internet has moreover pointed out the congestion problem, one of the problems that historicallyha ve affected the network. This paper deals with the design and the evaluation of a congestion control algorithm which adopts a FuzzyCon troller. The analogyb etween Proportional Integral (PI) regulators and Fuzzycon trollers is discussed and a method to determine the scaling factors of the Fuzzycon troller is presented. It is shown that the Fuzzycon troller outperforms the PI under traffic conditions which are different from those related to the operating point considered in the design.
Resumo:
This paper presents the results of the application of a parallel Genetic Algorithm (GA) in order to design a Fuzzy Proportional Integral (FPI) controller for active queue management on Internet routers. The Active Queue Management (AQM) policies are those policies of router queue management that allow the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. Two different parallel implementations of the genetic algorithm are adopted to determine an optimal configuration of the FPI controller parameters. Finally, the results of several experiments carried out on a forty nodes cluster of workstations are presented.
Resumo:
This paper focuses on improving computer network management by the adoption of artificial intelligence techniques. A logical inference system has being devised to enable automated isolation, diagnosis, and even repair of network problems, thus enhancing the reliability, performance, and security of networks. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as an external managing entity capable of directing, coordinating, and stimulating actions in an active management architecture. The active networks technology represents the lower level layer which makes possible the deployment of code which implement teleo-reactive agents, distributed across the whole network. We adopt the Situation Calculus to define a network model and the Reactive Golog language to implement the logical reasoner. An active network management architecture is used by the reasoner to inject and execute operational tasks in the network. The integrated system collects the advantages coming from logical reasoning and network programmability, and provides a powerful system capable of performing high-level management tasks in order to deal with network fault.
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.
Resumo:
In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the well known National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.