994 resultados para Gini coefficient (G)
Resumo:
Oiseaux No.4
Resumo:
Coléoptères No.1
Resumo:
Text
Resumo:
1
Resumo:
Text, pt. 2
Resumo:
Text, pt. 1
Resumo:
The experiments reported were started as early as 1933, when indications were found in class material that the factor for small pollen, spl, causes not only differences in the size of pollen grains and in the growth of pollen tubes, but also a competition between megaspores, as first observed by RENNER (1921) in Oenothera. Dr. P. C. MANGELSDORF, who had kindly furnished the original seeds, was informed and the final publication delayed untill his publication in 1940. A further delay was caused by other circunstances. The main reason for the differences of the results obtained by SINGLETON and MANGELSDORF (1940) and those reported here, seems to be the way the material was analysed. I applied methods of a detailed statistical analysis, while MANGELSDORF and SINGLETON analysed pooled data. 1) The data obtained on pollen tube competition indicate .that there is about 3-4% of crossing-over between the su and sp factors in chromosome IV. The elimination is not always complete, but from 0 to 10% of the sp pollen tubes may function, instead of the 50% expected without elimination. These results are, as a whole, in accordance with SINGLETON and MANGELSDORF's data. 2) Female elimination is weaker and transmission determined as between 16 to 49,5%, instead of 50% without competition, the values being calculated by a special formula. 3) The variability of female elimination is partially genotypical, partially phenotypical. The former was shown by the difference in the behavior of the two progenies tested, while the latter was very evident when comparing the upper and lower halves of ears. For some unknown physiological reason, the elimination is generally stronger in the upper than in the lower half of the ear. 4) The female elimination of the sp gene may be caused theoretically, by either of two processes: a simple lethal effect in the female gametophyte or a competition between megaspores. The former would lead not only to the abortion of the individual megaspores, but of the whole uniovulate ovary. In the case of the latter, the abortive megaspore carrying the gene sp will be substituted in each ovule by one of the Sp megaspores and no abortion of ovaries may be observed. My observations are completely in favor of the second explication: a) The ears were as a whole very well filled except for a few incomplete ears which always appear in artificial pollinations. b) Row arrangement was always very regular. c) The number of kernels on ears with elimination is not smaller than in normal ears, but is incidentally higher : with elimnation, in back-crosses 354 kernels and in selfed ears 390 kernels, without elimination 310 kernels per ear. d) There is no correlation between the intensity of elimination and the number of grains in individual ears; the coefficient; of linear correlation, equal to 0,24, is small and insignificant. e) Our results are in complete disagreement whit those reported by SINGLETON and MANGELSDORF (1940). Since these authors present only pooled date, a complete and detailed analysis which may explain the cause of these divergences is impossible.
Resumo:
This paper is a joined publication of the Depts. of Genetics and of Technology, of the E. S. A. "Luiz de Queiroz", Universidade de São Paulo, and deals with the variation of the percentage oil content in the whole seeds, the embryos and the seed-coat of 28 varieties of castor-beans (Ricinus communis, L.). Primarily, the authors, as a justification of this paper, make reference to the applications which castor-oil has in industry, medicine, etc. In accordance with the weight of 100 seeds, the varieties of castor-beans were classified into 3 classes : small seeds (100 seeds less than 30 g), medium seeds (100 seeds between 30 g and 60) and large seeds (100 seeds more than 60 g). The percentage of oil in the seed, embryo and seed-coat, the dimensions of the seeds and the weight of 100 seeds are given for every variety in table 1. In order to obtain an estimate of the variability for the methods of determination of the oil percentage, in the 3 differents parts of the seeds and also in the 3 groups of seeds, the coefficient of variability was calculate (table 2). It is showed that the variation in the seed and embryo is low and that in the seed-coat is very high. The analysis of variance, with regard to the difference among the 3 types of seeds (small, medium and large), among the 3 parts of the seed (whole seed, embryo and seed-coat) and residual error, is given in table 3. Only, the oil content of whole seeds among types of seeds was significant at the 5% level. The t test among the correspondent means is not significant for the difference between medium and large seeds is significant between both these types (medium and large) and small seeds. The fiducial limits in relation to the mean of the oil percentage in the 3 differents types of seed, show that there is one variety (n. 1013-2), which has a percentage of oil, in the medium type of seed, significantly at the 5% level (table 4), higher than the general mean. Since the distribution of the percentage of oil in the seedcoat is discontinuous, 5 groups were established (table 5). All the differences between groups are significant (table 6). For practical purposes, when we have to remove the seed coat, one should eliminate those varieties which loose at least 3% of oil by this procedure. There is a significant linear correlation at 5% level between the percentage of oil in the seed and in the embryo, of the smali and medium type of seeds (table 7), and also, when taking the 3 types together (lower part of table 7), one finds that the same is true. Also, the correlation between the percentages of oil in the embryo and in the seed-coat of the 3 types together is significant at 5% level. According to the results obtained in relation to the percentage in 28 varieties studied, it can be recommended, for breeding purposes, to work only with those varieties which belong to the medium and the large types of seeds.
Resumo:
The A. studied the use of "crescilin", a residual byproduct of penicillin manufacture. It has been recommended the proportion of 1 per cent and proclaimed to supply 400,000 U. O. per kg. The results obtained permited to conclude that 1 per cent of crescilin did not increase the growth of pigs.
Resumo:
Magdeburg, Univ., Med. Fak., Diss., 2012
Resumo:
Aplicações de fertilizantes por via foliar e ao solo foram comparados na cultura algodoeira, utilizando-se a variedade IAC-12, com a finalidade de se estudar uma influência sobre alguns caracteres físicos da fibra e da semente. Tanto na adubação ao solo, como na foliar, foram utilizados como fonte de nitrogênio, a uréia (46%N), como fonte de fósforo, o superfosfato concentrado (45% P2O2) e como fonte de potássio, o cloreto de potássio (60% K2O). Os resultados obtidos mostram que entre as características físicas da análise da fibra, encontrou-se um efeito positivo no comprimento da fibra, resistência da fibra, resistência do fio e maior peso de semente (índice de semente) quando o cloreto de potássio foi aplicado por via foliar. Quanto à uniformidade da fibra e ao índice de finura, não houve influência da adubação foliar com nenhum dos três elementos. Nestes casos, a adubação ao solo, proporcionou melhores resultados. Deve-se ressaltar que com a dose mais alta de fósforo (60 kg de P2O5/ha), o valor do índice de finura foi maior. O adubo nitrogenado na dose de 40 kg de N/ha, influenciou na resistência da fibra (Pressley).
Resumo:
v.17:no.4(1938)