924 resultados para Gestural interface


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass micropipettes with silanized inner walls can be filled with an organic solvent for voltammetric measurements in an aqueous solution. This arrangement was employed to investigate systematically the mechanism of facilitated potassium ion transfer by an ionophore dibenzo-18-crown-6 (DB18C6) across a micro-water/1.2-dichloroethane(W/DCE) interface supported at the tip of a silanized micropipette. Our experimental results verify that this facilitated ion transfer across the liquid/liquid interface did occur by an interfacial complexation-dissociation process (TIC-TID mechanism). The ratio of the diffusion coefficient of DB18C6 to that of its complexed ion in the DCE phase was calculated to be 1.74 +/- 0.07.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesized a hydroxyphenyloxadiazole lithium complex (LiOXD) as a blue light-emitting and electron injection/transport material to be used in double-layer organic electroluminescent devices. Devices with the concise configuration of ITO/TPD/LiOXD/Al showed bright blue EL emission centered at 468 nm with a maximum luminance of 2900 cd m(-2). A current efficiency of 3.9 cd A(-1) and power efficiency of 1.1 lm W-1 were obtained. LiOXD was also examined as an interface material. The efficiency of an ITO/NPB/Alq(3)/Al device increased considerably when LiOXD was inserted between Alq(3) and aluminium. The improvement of the device characteristics with LiOXD approached that observed with the dielectric LiF salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a novel approach for preparing SERS and SPR substrates was developed, which indicates a potential application in tailoring the interfacial structure of an electrode surface. In this study, (3-mercaptopropyl)trimethoxysilane (MPTMS) was selected as a polymeric adhesive layer, and a low concentration of colloid Au solution was used to achieve a more accurate control over interface morphology at nanoscale dimensions due to slow self-assembling kinetics of gold nanoparticle's. Subsequent seeding growth of these MPTMS-supported submonolayers of gold nanoparticles in Au3+/NH2OH aqueous solution enlarges particle size and eventually results in the generation of conductive gold films (similar to previous (3-aminopropyl)trimethoxysilane-supported gold films). Such tunable interface structure was evaluated by atomic force microscopy (AFM). Also, ac impedance spectroscopy (ACIS) and cyclic voltammograms were performed to evaluate electrochemical properties of the as-prepared interfaces by using Fe(CN)(6) (3-/4-) couples as a probe. Furthermore, relevant theories of microarray electrodes were introduced into this study to explain the highly tunable electrochemical properties of the as-prepared interfaces. As a result, it is concluded that the electrochemical properties toward Fe(CN)(6) (3-/4-) couples are highly dependent on the active nanoelectrode (nanoparticles) area fraction and nanoparticles are fine-tuners of interfacial properties because the number density. (numbers/unit area) and size of nanoparticles are highly tunable by self-assembling and seeding growth time scale control. This is in agreement with the theoretical expectations for a microarray electrode if a single nanoparticle tethered to a blocking SAM is taken as a nanoelectrode and 2-D nanoparticle assemblies are taken as nanoelectrode arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs+. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3+/-0.2) x 10(-6) cm(2) s(-1). The experimental results indicate that a 1:1 (metal: ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na+ > Li+ > K+ > Rb+ > Cs+. The logarithm of the association constants (log beta(1)(0)) of the LiL+, NaL+, KL+ and RbL+ complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k(0)) for Li+, Na+, K+ and Rb+ transfers facilitated by L are 0.54+/-0.05, 0.63+/-0.09, 0.51+/-0.04 and 0.46+/-0.06 cm s(-1), respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic volt-ammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1 : 1 stoichiometry under these two conditions, and the corresponding association constants were determined at log beta(1) = 8.97 +/- 0.05 or log beta(1) = 8.63 +/- 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1 : 2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K (DB15C5)(2) at the interface by a TIC mechanism, while the second one may be another TIC process with 1 : 1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)(2), in the organic phase in two cases, logbeta(2), are 13.64 +/- 0.03 and 11.34 +/- 0.24, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method to study electron-transfer (ET) reactions between ferrocene in 1,2-dichloroethane (DCE) and a redox couple of K3Fe(CN)(6) and K4Fe(CN)(6) in water using scanning electrochemical microscopy (SECM) with a three-electrode setup is reported. In this work, a water droplet that adheres to the Surface of a platinum disk electrode is immersed in a DCE solution. The aqueous redox couple serves both as a reference electrode on the platinum disk and as an electron donor/acceptor at the polarized liquid/liquid inter-face. With the present experimental approach, the liquid/liquid interface can be polarized externally, while the electron-transfer reactions between the two phases can be monitored independently by SECM. The apparent heterogeneous rate constants for the ET reactions were obtained by fitting the experimental approach curves to the theoretical values. These rate constants obey the Butler-Volmer theory i.e., them, are found to be potential dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of polymerization of monomer reactant-polyimide (POI) as the interfacial agent on the interface characteristics, morphology features, and crystallization of poly(ether sulfone)/poly(phenylene sulfide) (PES/PPS) blends were investigated using a scanning electron microscope, FTIR, WAXD, and XPS surface analysis. It was found that the interfacial adhesion was enhanced, the particle size of the dispersed phase was reduced, and the miscibility between PES and PPS was improved by the addition of POI. It was also found that POI was an effective nucleation agent of the crystallization for PPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A functionalized fullerene derivative containing a monoaza-18-crown-6 moiety was investigated by facilitated ion (such as Li+, Na+, K+, NH4+, Mg2+, and Ca2+) transfer across the micro-water/nitrobenzene interface supported at the tip of a micropipet. The current responses were detected by cyclic voltammetry and Osteryoung square wave voltammetry, which demonstrated that the facilitated ion transfer does occur by an interfacial complexation-dissociation process. The diffusion coefficient of this compound in nitrobenzene was approximately (5.90 +/- 0.04) x 10(-7) cm(2) s(-1), which is 1 order of magnitude less than other common ionophores due to the large size of the molecule. The selectivity of this molecule toward the metal ions followed the sequence Na+ > Li+ > K+ > NH4+ > Ca2+ similar to Mg2+. In addition, this compound was also easy to form film at the water/nitrobenzene interface to inhibit the simple ion transfer of tetramethylammonium ion. However, the adsorption of this ionophore has less influence on the facilitated metal ion transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.