988 resultados para Geometric morphometry. Secular trends. Maxillo-mandibular structures
Resumo:
ABSTRACT OBJECTIVE To analyze the temporal trend of asthma and rhinoconjunctivitis prevalences as well as their symptoms in adolescents. METHODS Two cross-sectional studies were conducted using the same methodology and questionnaire as was used for adolescents aged 12 to 14 years in the Brazilian city of Florianopolis, SC, Southern Brazil. Based on the international protocol of the International Study of Asthma and Allergies in Childhood (ISAAC) study, adolescents were evaluated in 2001 and 3,150 in 2012. The schools included in this study were the same as in the 2001 study. These schools were randomly selected after stratification by network (public and private) and geographic location. The total average percentage variation was estimated for the prevalence of asthma and rhinoconjunctivitis and their symptoms. RESULTS The prevalence of reported asthma was 10.9% in 2001 and 14.8% in 2012, with an average variation of 2.8% in the period. The highest average variation in the period was observed among female adolescents (4.1%). In parallel a significant increase occurred in reported physician-diagnosed asthma, 7.3% in 2001 and 11,1% in 2012, with an annual variation of 4.5%. The largest increases in reported physician-diagnosed asthma were seen in female (5.9%) and male (4.5%) public school pupils. In addition, a significant increase in reported rhinoconjunctivitis occurred, with the average variation in the period being 5.2%. Reports of severe asthma symptoms remained unchanged during the period, while the annual variation for reported current wheezing (-1.3%) and wheezing during exercise (-1.2%) decreased. CONCLUSIONS The results showed a significant increase in the annual average variation for asthma and rhinoconjunctivitis prevalence during the 2001 to 2012 period.
Resumo:
In this work, an experimental study was performed on the influence of plug filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. The experimental programme includes repairs with different values of overlap length (LO=10, 20 and 30 mm), and with and without plug filling. The influence of the testing speed on the repairs strength is also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature, 50ºC and 80ºC. This will permit a comparative evaluation of the adhesive tested below and above the Glass Transition Temperature (Tg), established by the manufacturer at 67ºC. The global tendencies of the test results concerning the plug filling and overlap length analyses are interpreted from the fracture modes and typical stress distributions for bonded repairs. According to the results obtained from this work, design guidelines for repairing aluminium structures were recommended.
Resumo:
The increasing use of Carbon-Fibre Reinforced Plastic (CFRP) laminates in high responsibility applications introduces an issue regarding their handling after damage. The availability of efficient repair methods is essential to restore the strength of the structure. The availability of accurate predictive tools for the repairs behaviour is also essential for the reduction of costs and time associated to extensive tests. This work reports on a numerical study of the tensile behaviour of three-dimensional (3D) adhesively-bonded scarf repairs in CFRP structures, using a ductile adhesive. The Finite Element (FE) analysis was performed in ABAQUS® and Cohesive Zone Models (CZM’s) was used for the simulation of damage in the adhesive layer. A parametric study was performed on two geometric parameters. The use of overlaminating plies covering the repaired region at the outer or both repair surfaces was also tested as an attempt to increase the repairs efficiency. The results allowed the proposal of design principles for repairing CFRP structures.
Resumo:
Bonded unions are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional fastening, riveting, bolting and welding techniques. Between the available bonding configurations, the single-lap joint is the most commonly used and studied by the scientific community due to its simplicity, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes in single-lap joints is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses at the damage initiation sites in structures or alterations of the failure mechanism emerging from local modifications. In this work, the effect of hole drilling at the overlap on the strength of single-lap joints was analyzed experimentally with two main purposes: (1) to check whether or not the anchorage effect of the adhesive within the holes is more preponderant than the stress concentrations near the holes, arising from the sharp edges, and modification of the joints straining behaviour (strength improvement or reduction, respectively) and (2) picturing a real scenario on which the components to be bonded are modified by some external factor (e.g. retrofitting of decaying/old-fashioned fastened unions). Tests were made with two adhesives (a brittle and a ductile one) varying the adherend thickness and the number, layout and diameter of the holes. Experimental testing showed that the joints strength never increases from the un-modified condition, showing a varying degree of weakening, depending on the selected adhesive and hole drilling configuration.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Biomédica. A presente dissertação foi desenvolvida no Erasmus Medical Center em Roterdão, Holanda
Resumo:
This paper addresses the problem of optimal positioning of surface bonded piezoelectric patches in sandwich plates with viscoelastic core and laminated face layers. The objective is to maximize a set of modal loss factors for a given frequency range using multiobjective topology optimization. Active damping is introduced through co-located negative velocity feedback control. The multiobjective topology optimization problem is solved using the Direct MultiSearch Method. An application to a simply supported sandwich plate is presented with results for the maximization of the first six modal loss factors. The influence of the finite element mesh is analyzed and the results are, to some extent, compared with those obtained using alternative single objective optimization.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Between October 1988 and April 1989 a cross-sectional survey was carried out in six out of eight blood banks of Goiânia, Central Brazil. Subjects attending for first-time blood donation in the mornings of the study period (n = 1358) were interviewed and screened for T. cruzi infection as a part of a major study among blood donors. Tests to anti-T. cruzi antibodies were performed, simultaneously, by indirect hem agglutination test (IHA) and complement fixation test (CFT). A subject was considered seropositive when any one of the two tests showed a positive result. Information on age, sex, place of birth, migration and socio-economic level was recorded. Results from this survey were compared with seroprevalence rates obtained in previous studies in an attempt to analyse trend of T. cruzi infection in an endemic urban area. The overall seroprevalence of T. cruzi infection among first-time donors was found to be 3.5% (95% confidence interval 2.5%-4.5% ). The seroprevalence rate increased with age up to 45 years and then decreased. Migrants from rural areas had higher seroprevalence rates than subjects from urban counties (1.8%-16.2% vs. 0%-3.6%). A four fold decrease in prevalence rates was observed when these rates were compared with those of fifteen years ago. Two possible hypotheses to explain this difference were suggested: 1. a cohort effect related with the decrease of transmission in rural areas and/or 2. a differential proportion of people of rural origin among blood donors between the two periods. The potential usefulness of blood banks as a source of epidemiological information to monitor trends of T. cruzi infection in an urban adult population was stressed.
Resumo:
Climatic changes that affected the Northeastern Atlantic frontage are analyzed on the basis of the evolution of faunas and floras from the late Oligocene onwards. The study deals with calcareous nannoplankton, marine micro- and macrofaunas, some terrestrial vertebrates and vegetal assemblages. The climate, first tropical, underwent a progressive cooling (North-South thermic gradient). Notable climatic deteriorations (withdrawal towards the South or disappearance of taxa indicative of warm climate and appearance of "cold" taxa) are evidenced mainly during the Middle Miocene and the late Pliocene. Faunas and floras of modern pattern have regained, after the Pleistocene glaciations, a new climatic ranging of a temperate type in the northern part.
Resumo:
Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Functionally graded composite materials can provide continuously varying properties, which distribution can vary according to a specific location within the composite. More frequently, functionally graded materials consider a through thickness variation law, which can be more or less smoother, possessing however an important characteristic which is the continuous properties variation profiles, which eliminate the abrupt stresses discontinuities found on laminated composites. This study aims to analyze the transient dynamic behavior of sandwich structures, having a metallic core and functionally graded outer layers. To this purpose, the properties of the particulate composite metal-ceramic outer layers, are estimated using Mod-Tanaka scheme and the dynamic analyses considers first order and higher order shear deformation theories implemented though kriging finite element method. The transient dynamic response of these structures is carried out through Bossak-Newmark method. The illustrative cases presented in this work, consider the influence of the shape functions interpolation domain, the properties through-thickness distribution, the influence of considering different materials, aspect ratios and boundary conditions. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a damage-detection approach using the Mahalanobis distance with structural forced dynamic response data, in the form of transmissibility, is proposed. Transmissibility, as a damage-sensitive feature, varies in accordance with the damage level. Besides, Mahalanobis distance can distinguish the damaged structural state condition from the undamaged one by condensing the baseline data. For comparison reasons, the Mahalanobis distance results using transmissibility are compared with those using frequency response functions. The experiment results reveal quite a significant capacity for damage detection, and the comparison between the use of transmissibility and frequency response functions shows that, in both cases, the different damage scenarios could be well detected. Copyright (c) 2015 John Wiley & Sons, Ltd.
Resumo:
Sandwich structures with soft cores are widely used in applications where a high bending stiffness is required without compromising the global weight of the structure, as well as in situations where good thermal and damping properties are important parameters to observe. As equivalent single layer approaches are not the more adequate to describe realistically the kinematics and the stresses distributions as well as the dynamic behaviour of this type of sandwiches, where shear deformations and the extensibility of the core can be very significant, layerwise models may provide better solutions. Additionally and in connection with this multilayer approach, the selection of different shear deformation theories according to the nature of the material that constitutes the core and the outer skins can predict more accurately the sandwich behaviour. In the present work the authors consider the use of different shear deformation theories to formulate different layerwise models, implemented through kriging-based finite elements. The viscoelastic material behaviour, associated to the sandwich core, is modelled using the complex approach and the dynamic problem is solved in the frequency domain. The outer elastic layers considered in this work may also be made from different nanocomposites. The performance of the models developed is illustrated through a set of test cases. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.