980 resultados para Geometría proyectiva
Resumo:
Para conocer cómo están de conocimientos matemáticos elementales los alumnos que acceden por primera vez en las diplomaturas de maestro a la materia de matemáticas, se les han aplicado las pruebas de diágnóstico para alumnos de sexto curso de primaria de las comunidades autónomas de Murcia y Madrid. La muestra la forman alumnos de las universidades de Murcia, La Laguna y Oviedo y de varias especialidades. Los resultados se analizan por ítem, por variables de corte, se efectúa un análisis descriptivo e inferencial y se comparan los resultados de las dos pruebas con los obtenidos por los alumnos de sexto curso de primaria.
Resumo:
Cuzco, Ámsterdam: ciudades reales, visibles y circulares como Bram, en Francia, y la Connaught Place de Nueva Delhi, en India. La retícula de calles rectilíneas, ortogonal o no, es a la vez huella y símbolo de la forma urbana. En ocasiones inspira nombres numéricos para sus calles. En Nueva York, desde el sur de Manhattan hasta el Bronx, las calles paralelas al eje E-O se ordenan y nombran según los números naturales (de la 1st a la 242th street). De igual modo, las avenidas perpendiculares que discurren N-S van de la 1a a la 11a, comenzando por el Este. No tan extensa es la retícula de Mandalay, en Myanmar, donde 90 de las calles N-S están numeradas de Este a Oeste, y 44 de sus perpendiculares de Sur a Norte. En la retícula de Miramar (Argentina) las calles en una dirección reciben nombres pares; las otras, impares. No es extraño que en ámbitos tan geométricos como los de esas ciudades nombre y número se confundan.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: Solo existen dos números mórficos, el número de oro y el número plástico.
Resumo:
Seguimos adelante con el recorrido que hemos comenzado por las TIC y su uso en el aula de matemáticas en esta sección MatemásTIC. Si el primer número de la sección lo dedicamos a una aplicación de software libre para el desarrollo del cálculo mental y el segundo a una aplicación para la práctica de la geometría interactiva, en esta tercera hemos optado por una aplicación lúdica de contenido matemático.
Resumo:
Para conocer un todo no es necesario el conocimiento exhaustivo de cada uno de los elementos que lo componen. Basta con determinar sus elementos fundamentales y saber qué leyes determinan la relación entre ellos y los demás. Solamente un todo pequeño (finito) puede conocerse por completo, elemento a elemento. Los todos más vastos (infinitos), jamás. Kublai se da cuenta de que no hay otro modo de conocer conjuntos tan grandes. El conjunto de los números naturales se conoce a partir de un elemento (uno) y de una ley de formación (uno más uno: dos). Un espacio vectorial se conoce a partir de los vectores de su base y del modo en que operan (suman y multiplican) entre ellos y con los escalares de un cuerpo K.
Resumo:
Este artículo describe una actividad en la cual los alumnos adquieren algunos conceptos básicos sobre topología de forma intuitiva. Teniendo en cuenta su principal ventaja, el aprendizaje cooperativo, el puzzle de Aronson es la herramienta que proporciona la metodología más conveniente para desarrollar esta experiencia.
Resumo:
No es la primera vez que Calvino localiza un lugar mediante un ángulo y una distancia. Unas coordenadas polares referenciadas en los puntos cardinales y una distancia medida con unidad de tiempo.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: “solo existen dos números mórficos, el número de oro y el número plástico”.
Resumo:
¿A qué recuerda ese residuo de infelicidad (imperfección, inexactitud) que jamás llega a compensar la piedra más preciosa (fórmula, igualdad) y cuyo conocimiento determina el número exacto de quilates (perfección, igualdad) a la que debe aproximarse el diamante final (sucesión, serie, límite)? Sólo conociendo bien ese residuo evitaremos errores de cálculo, errores en la igualdad.
Resumo:
La función de Marco es describir a Kublai ciudades reales mediante el relato de sus características. Pero Kublai quiere saber ahora si una serie de características que él reúne corresponde a las de una ciudad real. La función de Kublai es inversa de la de Marco, pero está por ver si su dominio no es vacío.
Resumo:
Este artículo propone una investigación sobre clepsidras (relojes de agua) para alumnos de 2º de bachillerato. El cálculo integral será la clave para descubrir cómo la geometría de los recipientes condiciona el funcionamiento de estos mecanismos milenarios.
Resumo:
El modelo del presente como un punto que recorre la recta del tiempo dejando el pasado a la izquierda y el futuro a la derecha, es demasiado simple. Calvino admite más de un posible futuro aunque al final sólo vivamos uno de ellos, ya sea por voluntad propia o impuesta. Los demás dejan inmediatamente de pertenecer tanto a nuestro futuro como a nuestro pasado.
Resumo:
Dufour inventó un sistema de representación geográfica basado en principios topológicos en lugar de los principios geométricos de los mapas, croquis y planos habituales. La llamada marcha Doufour, aunque de origen militar, se emplea actualmente en actividades excursionistas y alpinistas para moverse por la montaña, pero es fácilmente adaptable a recorridos urbanos. Posee enormes posibilidades didácticas de carácter abstracto, obligando a los usuarios a desarrollar no sólo pautas de orientación sino también de razonamiento lógico sistemático. Ha sido utilizada con éxito en pruebas de calle de olimpiadas matemáticas.
Resumo:
El número de oro Φ=1,618... es al plano, lo que el número plástico P=1,2471... es al espacio. Ver esto es el objetivo final de este clip. Pero permitan primero una breve visita a la familia de los números metálicos en la cual destaca con luz propia el áureo.
Resumo:
El próximo mes de junio cerraré, al menos por el momento, esta sección y me gustaría despedirme con el relato de una historia muy especial. A lo largo de casi treinta años de profesión he ido guardado en un arcón, como los piratas de antaño, un montón de joyas encontradas en mis travesías matemáticas, logrando acumular un botín bastante suculento. Una de mis piezas favoritas es esta historia, una historia que ojalá me hubiesen contado cuando me enseñaron por primera vez los rudimentos del álgebra lineal. De hecho, si hoy tuviese que impartir clase de álgebra lineal en bachillerato o en un primer curso de cualquier carrera científica o técnica y se me permitiese hacerlo a mi manera, articularía mis clases en torno a esta historia. Sus distintos episodios, todos ellos verídicos, me han ido llegando a través de los años de la mano del matemático Mario Fernández Barberá, del escultor José Luis Alexanco y del poeta Ramón Mayrata.