971 resultados para Genetic heritability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) is a common inflammatory arthritis predominantly affecting the axial skeleton. Susceptibility to the disease is thought to be oligogenic. To identify the genes involved, we have performed a genomewide scan in 185 families containing 255 affected sibling pairs. Two-point and multipoint nonparametric linkage analysis was performed. Regions were identified showing "suggestive" or stronger linkage with the disease on chromosomes 1p, 2q, 6p, 9q, 10q, 16q, and 19q. The MHC locus was identified as encoding the greatest component of susceptibility, with an overall LOD score of 15.6. The strongest non-MHC linkage lies on chromosome 16q (overall LOD score 4.7). These results strongly support the presence of non-MHC genetic-susceptibility factors in AS and point to their likely locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) is a common and highly heritable inflammatory arthropathy. Although the gene HLA-B27 is almost essential for the inheritance of the condition, it alone is not sufficient to explain the pattern of familial recurrence of the disease. We have previously demonstrated suggestive linkage of AS to chromosome 2q13, a region containing the interleukin 1 (IL-1) family gene cluster, which includes several strong candidates for involvement in the disease. In the current study, we describe strong association and transmission of IL-1 family gene cluster single-nucleotide polymorphisms and haplotypes with AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives - It has long been suspected that susceptibility to ankylosing spondylitis (AS) is influenced by genes lying distant to the major histocompatibility complex. This study compares genetic models of AS to assess the most likely mode of inheritance, using recurrence risk ratios in relatives of affected subjects. Methods - Recurrence risk ratios in different degrees of relatives were determined using published data from studies specifically designed to address the question. The methods of Risch were used to determine the expected recurrence risk ratios in different degrees of relatives, assuming equal first degree relative recurrence risk between models. Goodness of fit was determined by χ2 comparison of the expected number of affected subjects with the observed number, given equal numbers of each type of relative studied. Results - The recurrence risks in different degrees of relatives were: monozygotic (MZ) twins 63% (17/27), first degree relatives 8.2% (441/5390), second degree relatives 1.0% (8/834), and third degree relatives 0.7% (7/997). Parent-child recurrence risk (7.9%, 37/466) was not significantly different from the sibling recurrence risk (8.2%, 404/4924), excluding a significant dominance genetic component to susceptibility. Poor fitting models included single gene, genetic heterogeneity, additive, two locus multiplicative, and one locus and residual polygenes (χ2 > 32 (two degrees of freedom), p < 10-6 for all models). The best fitting model studied was a five locus model with multiplicative interaction between loci (χ2 = 1.4 (two degrees of freedom), p = 0.5). Oligogenic multiplicative models were the best fitting over a range of population prevalences and first degree recurrence risk rates. Conclusions - This study suggests that of the genetic models tested, the most likely model operating in AS is an oligogenic model with predominantly multiplicative interaction between loci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary haemochromatosis (HH) is the most common lethal monogenic human disease, affecting roughly 1 in 300 white northern Europeans. Homozygosity for the C282Y polymorphism within the HFE gene causes more than 80% of cases, with compound heterozygosity of the C282Y and H63D polymorphism also increasing susceptibility to disease. The aim of this study was to determine the frequency of the C282Y and H63D polymorphisms in the disease, and to assess the risk of HH in heterozygotes for the C282Y polymorphism. 128 patients were recruited because of either radiographic chondrocalcinosis (at least bicompartmental knee disease or joints other than the knee involved) or CPPD pseudogout. Genotyping of the HFE C282Y and H63D mutations was performed using PCR/SSP and genotypes for the C282Y polymorphism confirmed by PCR/RFLP. Historical white European control data were used for comparison. Two previously undiagnosed C282Y homozygotes (1.6%), and 16 C282Y heterozygotes (12.5%), including four (3.1%) C282Y/ H63D compound heterozygotes were identified. This represents a significant overrepresentation of C282Y homozygotes (relative risk 3.4, p-0.037), but the number of heterozygotes was not significantly increased. At a cost per test of £1 for each subject, screening all patients with chondrocalcinosis using the above ascertainment criteria costs only £64 for each case of haemochromatosis identified, clearly a highly cost effective test given the early mortality associated with untreated haemochromatosis. Routine screening for haemochromatosis in patients with appreciable chondrocatcinosis is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To identify genomic regions linked with determinants of age at symptom onset, disease activity, and functional impairment in ankylosing spondylitis (AS). Methods. A whole genome linkage scan was performed in 188 affected sibling pair families with 454 affected individuals. Traits assessed were age at symptom onset, disease activity assessed by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), and functional impairment assessed by the Bath Ankylosing Spondylitis Functional Index (BASFI). Parametric and nonparametric quantitative linkage analysis was performed using parameters defined in a previous segregation study. Results. Heritabilities of the traits studied in this data set were as follows: BASDAI 0.49 (P = 0.0001, 95% confidence interval [95% CI] 0.23-0.75), BASFI 0.76 (P = 10-7, 95% CI 0.49-1.0), and age at symptom onset 0.33 (P = 0.005, 95% CI 0.04-0.62). No linkage was observed between the major histocompatibility complex (MHC) and any of the traits studied (logarithm of odds [LOD] score <1.0). "Significant" linkage (LOD score 4.0) was observed between a region on chromosome 18p and the BASDAI. Age at symptom onset showed "suggestive" linkage to chromosome 11p (LOD score 3.3). Maximum linkage with the BASFI was seen at chromosome 2q (LOD score 2.9). Conclusion. In contrast to the genetic determinants of susceptibility to AS, clinical manifestations of the disease measured by the BASDAI, BASFI, and age at symptom onset are largely determined by a small number of genes not encoded within the MHC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To assess the role of genes and the environment in determining the severity of ankylosing spondylitis. Methods: One hundred seventy-three families with >1 case of ankylosing spondylitis were recruited (120 affected sibling pairs, 26 affected parent-child pairs, 20 families with both first- and second-degree relatives affected, and 7 families with only second-degree relatives affected), comprising a total of 384 affected individuals. Disease severity was assessed by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and functional impairment was determined using the Bath Ankylosing Spondylitis Functional Index (BASFI). Disease duration and age at onset were also studied. Variance-components modeling was used to determine the genetic and environmental components Contributing to familiality of the traits examined, and complex segregation analysis was performed to assess different disease models. Results. Both the disease activity and functional capacity as assessed by the BASDAI and the BASFI, respectively, were found to be highly familial (BASDAI familiality 0.51 [P = 10-4], BASFI familiality 0,68 [P = 3 × 10-7]). No significant shared environmental component was demonstrated to be associated with either the BASDAI or the BASFI. Including age at disease onset and duration of disease as covariates made no difference in the heritability assessments. A strong correlation was noted between the BASDAI and the BASFI (genetic correlation 0.9), suggesting the presence of shared determinants of these 2 measures. However, there was significant residual heritability for each measure independent of the other (BASFI residual heritability 0.48, BASDAI 0,36), perhaps indicating that not all genes influencing disease activity influence chronicity. No significant heritability of age at disease onset was found (heritability 0.18; P = 0.2). Segregation studies suggested the presence of a single major gene influencing the BASDAI and the BASFI. Conclusion. This study demonstrates a major genetic contribution to disease severity in ankylosing spondylitis. As with susceptibility to ankylosing spondylitis, shared environmental factors play little role in determining the disease severity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Several genetic risk variants for ankylosing spondylitis (AS) have been identified in genome-wide association studies. Our objective was to examine whether familial AS cases have a higher genetic load of these susceptibility variants. Methods Overall, 502 AS patients were examined, consisting of 312 patients who had first-degree relatives (FDRs) with AS (familial) and 190 patients who had no FDRs with AS or spondylarthritis (sporadic). All patients and affected FDRs fulfilled the modified New York criteria for AS. The patients were recruited from 2 US cohorts (the North American Spondylitis Consortium and the Prospective Study of Outcomes in Ankylosing Spondylitis) and from the UK-Oxford cohort. The frequencies of AS susceptibility loci in IL-23R, IL1R2, ANTXR2, ERAP-1, 2 intergenic regions on chromosomes 2p15 and 21q22, and HLA-B27 status as determined by the tag single-nucleotide polymorphism (SNP) rs4349859 were compared between familial and sporadic cases of AS. Association between SNPs and multiplex status was assessed by logistic regression controlling for sibship size. Results HLA-B27 was significantly more prevalent in familial than sporadic cases of AS (odds ratio 4.44 [95% confidence interval 2.06, 9.55], P = 0.0001). Furthermore, the AS risk allele at chromosome 21q22 intergenic region showed a trend toward higher frequency in the multiplex cases (P = 0.08). The frequency of the other AS risk variants did not differ significantly between familial and sporadic cases, either individually or combined. Conclusion HLA-B27 is more prevalent in familial than sporadic cases of AS, demonstrating higher familial aggregation of AS in patients with HLA-B27 positivity. The frequency of the recently described non-major histocompatibility complex susceptibility loci is not markedly different between the sporadic and familial cases of AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomewide association studies (GWAS) have proven a powerful hypothesis-free method to identify common disease-associated variants. Even quite large GWAS, however, have only at best identified moderate proportions of the genetic variants contributing to disease heritability. To provide cost-effective genotyping of common and rare variants to map the remaining heritability and to fine-map established loci, the Immunochip Consortium has developed a 200,000 SNP chip that has been produced in very large numbers for a fraction of the cost of GWAS chips. This chip provides a powerful tool for immunogenetics gene mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-1 gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-1A. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editorial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been 10 years since the seminal paper by Morrison and colleagues reporting the association of alleles of the vitamin D receptor and bone density [1], a paper which arguably kick-started the study of osteoporosis genetics. Since that report there have been literally thousands of osteoporosis genetic studies published, and large numbers of genes have been reported to be associated with the condition [2]. Although some of these reported associations are undoubtedly true, this snow-storm of papers and abstracts has clouded the field to such a great extent that it is very difficult to be certain of the veracity of most genetic associations reported hereto. The field needs to take stock and reconsider the best way forward, taking into account the biology of skeletal development and technological and statistical advances in human genetics, before more effort and money is wasted on continuing a process in which the primary achievement could be said to be a massive paper mountain. I propose in this review that the primary reasons for the paucity of success in osteoporosis genetics has been: •the absence of a major gene effect on bone mineral density (BMD), the most commonly studied bone phenotype; •failure to consider issues such as genetic heterogeneity, gene–environment interaction, and gene–gene interaction; •small sample sizes and over-optimistic data interpretation; and •incomplete assessment of the genetic variation in candidate genes studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mineral density (BMD) and poor bone quality. Peak bone density is achieved by the third decade of life, after which bone is maintained by a balanced cycle of bone resorption and synthesis. Age-related bone loss occurs as the bone resorption phase outweighs the bone synthesis phase of bone metabolism. Heritability accounts for up to 90% of the variability in BMD. Chromosomal loci including 1p36, 2p22-25, 11q12-13, parathyroid hormone receptor type 1 (PTHR1), interleukin-6 (IL-6), interleukin 1 alpha (IL-1α) and type II collagen A1/vitamin D receptor (COL11A1/VDR) have been linked or shown suggestive linkage with BMD in other populations. To determine whether these loci predispose to low BMD in the Irish population, we investigated 24 microsatellite markers at 7 chromosomal loci by linkage studies in 175 Irish families of probands with primary low BMD (T-score ≤ -1.5). Nonparametric analysis was performed using the maximum likelihood variance estimation and traditional Haseman-Elston tests on the Mapmaker/Sibs program. Suggestive evidence of linkage was observed with lumbar spine BMD at 2p22-25 (maximum LOD score 2.76) and 11q12-13 (MLS 2.55). One region, 1p36, approached suggestive linkage with femoral neck BMD (MLS 2.17). In addition, seven markers achieved LOD scores > 1.0, D2S149, D11S1313, D11S987, D11S1314 including those encompassing the PTHR1 (D3S3559, D3S1289) for lumbar spine BMD and D2S149 for femoral neck BMD. Our data suggest that genes within a these chromosomal regions are contributing to a predisposition to low BMD in the Irish population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To replicate the possible genetic association between ankylosing spondylitis (AS) and TNFRSF1A. Methods: TNFRSF1A was re-sequenced in 48 individuals with AS to identify novel polymorphisms. Nine single nucleotide polymorphisms (SNPs) in TNFRSF1A and 5 SNPs in the neighbouring gene SCNN1A were genotyped in 1604 UK Caucasian individuals with AS and 1019 matched controls. An extended study was implemented using additional genotype data on 8 of these SNPs from 1400 historical controls from the 1958 British Birth Cohort. A meta-analysis of previously published results was also undertaken. Results: One novel variant in intron 6 was identified but no new coding variants. No definite associations were seen in the initial study but in the extended study there were weak associations with rs4149576 (p=0.04) and rs4149577 (p=0.007). In the metaanalysis consistent, somewhat stronger associations were seen with rs4149577 (p=0.002) and rs4149578 (p=0.006). Conclusions: These studies confirm the weak genetic associations between AS and TNFRSF1A. In view of the previously reported associations of TNFRSF1A with AS, in Caucasians and Chinese, and the biological plausibility of this candidate gene, replication of this finding in well powered studies is clearly indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis is a highly heritable, common rheumatic condition, primarily affecting the axial skeleton. The association with HLA-B27 has been demonstrated worldwide, and evidence for a role of HLA-B27 in disease comes from linkage and association studies in humans, and transgenic animal models. However, twin studies indicate that HLA-B27 contributes only 16% of the total genetic risk for disease. Furthermore, there is compelling evidence that non-B27 genes, both within and outwith the major histocompatability complex, are involved in disease aetiology. In this post-genomic era we have the tools to help elicit the genetic basis of disease. This review describes methods for genetic investigation of ankylosing spondylitis, and summarises the status of current research in this exciting area.