665 resultados para Gaseous neuromodulators
Resumo:
A mathematical model for the group combustion of pulverized coal particles was developed in a previous work. It includes the Lagrangian description of the dehumidification, devolatilization and char gasification reactions of the coal particles in the homogenized gaseous environment resulting from the three fuels, CO, H2 and volatiles, supplied by the gasification of the particles and their simultaneous group combustion by the gas phase oxidation reactions, which are considered to be very fast. This model is complemented here with an analysis of the particle dynamics, determined principally by the effects of aerodynamic drag and gravity, and its dispersion based on a stochastic model. It is also extended to include two other simpler models for the gasification of the particles: the first one for particles small enough to extinguish the surrounding diffusion flames, and a second one for particles with small ash content when the porous shell of ashes remaining after gasification of the char, non structurally stable, is disrupted. As an example of the applicability of the models, they are used in the numerical simulation of an experiment of a non-swirling pulverized coal jet with a nearly stagnant air at ambient temperature, with an initial region of interaction with a small annular methane flame. Computational algorithms for solving the different stages undergone by a coal particle during its combustion are proposed. For the partial differential equations modeling the gas phase, a second order finite element method combined with a semi-Lagrangian characteristics method are used. The results obtained with the three versions of the model are compared among them and show how the first of the simpler models fits better the experimental results.
Resumo:
The planar and axisymmetric variable-density flows induced in a quiescent gas by a concentrated source of momentum that is simultaneously either a source or a sink of energy are investigated for application to the description of the velocity and temperature far fields in laminar gaseous jets with either large or small values of the initial jet-to-ambient temperature ratio. The source fluxes of momentum and heat are used to construct the characteristic scales of velocity and length in the region where the density differences are of the order of the ambient density, which is slender for the large values of the Reynolds number considered herein. The problem reduces to the integration of the dimensionless boundary-layer conservation equations, giving a solution that depends on the gas transport properties but is otherwise free of parameters. The boundary conditions at the jet exit for integration are obtained by analysing the self-similar flow that appears near the heat source in planar and axisymmetric configurations and also near the heat sink in the planar case. Numerical integrations of the boundary-layer equations with these conditions give solutions that describe accurately the velocity and temperature fields of very hot planar and round jets and also of very cold plane jets in the far field region where the density and temperature differences are comparable to the ambient values. Simple scaling arguments indicate that the point source description does not apply, however, to cold round jets, whose far field region is not large compared with the jet development region, as verified by numerical integrations
Resumo:
In typical liquid-fueled burners the fuel is injected as a high-velocity liquid jet that breaks up to form the spray. The initial heating and vaporization of the liquid fuel rely on the relatively large temperatures of the sourrounding gas, which may include hot combustion products and preheated air. The heat exchange between the liquid and the gas phases is enhanced by droplet dispersion arising from the turbulent motion. Chemical reaction takes place once molecular mixing between the fuel vapor and the oxidizer has occurred in mixing layers separating the spray flow from the hot air stream. Since in most applications the injection velocities are much larger than the premixed-flame propagation velocity, combustion stabilization relies on autoignition of the fuel-oxygen mixture, with the combustion stand-off distance being controlled by the interaction of turbulent transport, droplet heating and vaporization, and gas-phase chemical reactions. In this study, conditions are identified under which analyses of laminar flamelets canshed light on aspects of turbulent spray ignition. This study extends earlier fundamental work by Liñan & Crespo (1976) on ignition in gaseous mixing layers to ignition of sprays. Studies of laminar mixing layers have been found to be instrumental in developing un-derstanding of turbulent combustion (Peters 2000), including the ignition of turbulent gaseous diffusion flames (Mastorakos 2009). For the spray problem at hand, the configuration selected, shown in Figure 1, involves a coflow mixing layer formed between a stream of hot air moving at velocity UA and a monodisperse spray moving at velocity USUA. The boundary-layer approximation will be used below to describe the resulting sl ender flow, which exhibits different igniting behaviors depending on the characteristics of t he fuel. In this approximation, consideration of the case U A = U S enables laminar ignition distances to be related to ignition times of unstrained spray flamelets, thereby pro viding quantitative information of direct applicability in regions of low scala r dissipation-rate in turbulent reactive flows (see the discussion in pp. 181–186 of Peters (2000)) . This report is organized as follows. Effects of droplet dispersion dynamics on ignition of sprays in turbulent mixing layers are discussed in Section 2. The formulation f or ignition in laminar mixing layers is outlined in Sections 3 and 4. The results are presented in Section 5. In Section 6, the mixture-fraction field and associated scalar dissipat ion rates for spray ignition are discussed. Finally, some brief conclusions are drawn in Section 7.
Resumo:
The paper describes some relevant results of an on-going research aiming to elaborate a methodology to help the mobility management in natural parks, compatible with their protection missions: it has been developed a procedure to reproduce the mobility-environment relationships in various operational conditions. The final purpose is the identification of: a) the effects of various choices in transport planning, both at long term and strategic level; b) the most effective policies of mobility management. The work is articulated in the following steps: 1) definition of protected area on the basis of ecological and socio-economic criteria and legislative constraints; 2) analysis of mobility needs in the protected areas; 3) reconstruction of the state of the art of mobility management in natural parks at European level; 4) analysis of used traffic flows measurement methods; 5) analysis of environmental impacts due to transport systems modelling (air pollution and noise only); 6) identification of mitigation measures to be potentially applied. The whole methodology has been tested and validated on Italian case studies: i) the concerned area has been zoned according to the land-use peculiarities; ii) the local situations of transport infrastructure (roads and parking), services (public transport systems) and rules (traffic regulations) have been mapped with references to physical and functional attributes; iii) the mobility, both systematic and touristic, has been represented in an origin-destination matrix. By means of an assignment model the flows have been distributed and the corresponding average speeds to quantify gaseous and noise emissions was calculated, the criticalities in the reference scenario have been highlighted, as well as some alternative scenarios, including both operational and infrastructural measures have been identified. The comparison between projects and reference scenario allowed the quantification of effects (variation of emissions) for each scenario and a selection of the most effective management actions to be taken.
Resumo:
Ammonia emissions from livestock production can have negative impacts on nearby protected sites and ecosystems that are sensitive to eutrophication and acidification. Trees are effective scavengers of both gaseous and particulate pollutants from the atmosphere making tree belts potentially effective landscape features to support strategies aiming to reduce ammonia impacts. This research used the MODDAS-THETIS a coupled turbulence and deposition turbulence model, to examine the relationships between tree canopy structure and ammonia capture for three source types?animal housing, slurry lagoon, and livestock under a tree canopy. By altering the canopy length, leaf area index, leaf area density, and height of the canopy in the model the capture efficiencies varied substantially. A maximum of 27% of the emitted ammonia was captured by tree canopy for the animal housing source, for the slurry lagoon the maximum was 19%, while the livestock under trees attained a maximum of 60% recapture. Using agro-forestry systems of differing tree structures near ?hot spots? of ammonia in the landscape could provide an effective abatement option for the livestock industry that complements existing source reduction measures.
Resumo:
The final purpose is the identification of: a) the effects of various choices in transport planning, both at long term and strategic level; b) the most effective policies of mobility management. The preliminary work was articulated in the following steps: 1) definition of protected area on the basis of ecological and socio-economic criteria and legislative constraints; 2) analysis of mobility needs in the protected areas; 3) reconstruction of the state of the art of mobility management in natural parks at European level; 4) analysis of used traffic flows measurement methods; 5) analysis of environmental impacts due to transport systems modelling (limited to air pollution and noise); 6) identification of mitigation measures to the potentially applied. The whole methodology has been firstly tested on the case study of the National Park of ?Gran Sasso and Monti della Laga? and further validated on the National Park of ?Gargano?, both located Italy: i) the concerned area has been zoned according to the land-use peculiarities; ii) the local situations of transport infrastructure (roads and parking), services (public transport systems) and rules (traffic regulations) have been mapped with references to physical and functional attributes; iii) the mobility, both systematic and touristic, has been synthetically represented in an origin-destination matrix. By means of an assignment model it has been determined the distribution of flows and the corresponding average speeds to quantify gaseous and noise emissions. On this basis the environmental criticalities in the reference scenario have been highlighted, as well as some alternative scenarios including both operational and infrastructural measures have been identified. The comparison between the projects and the reference scenario allowed the quantification of the effects (variation of emissions) for each scenario and a selection of the most effective management actions to be taken.
Resumo:
Intensive farm systems handle large volume of livestock wastes, resulting in adverse environmental effects, such as gaseous losses into the atmosphere in form of ammonia (NH3) and greenhouse gases (GHG), i.e. methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the manure management continuum of slurry storage with impermeable cover and following cattle slurry band spreading and incorporation to soil was assessed for NH3 and GHG emissions. The experiment was conducted in an outdoor covered storage (flexible bag system) (study I), which collected the slurry produced in 7 dairy cattle farms (2,000 m3 slurry) during 12 days in the northern Spain.
Resumo:
Esta Tesis doctoral fue desarrollada para estudiar las emisiones de amoniaco (NH3) y metano (CH4) en purines de cerdos, y los efectos ocasionados por cambios en la formulación de la dieta. Con este propósito, fueron llevados a cabo tres estudios. El experimento 1 fue realizado con el objetivo de analizar los factores de variación de la composición de purines y establecer ecuaciones de predicción para emisiones potenciales de NH3 y CH4. Fueron recogidas setenta y nueve muestras de piensos y purines durante dos estaciones del año (verano y invierno) de granjas comerciales situadas en dos regiones de España (Centro y Mediterráneo). Se muestrearon granjas de gestación, maternidad, lactación y cebo. Se determinó la composición de piensos y purines, y la emisión potencial de NH3 y CH4. El contenido de nutrientes de los piensos fue usado como covariable en el análisis. La espectroscopia de reflectancia del infrarrojo cercano (NIRS) se evaluó como herramienta de predicción de la composición y potencial emisión de gases del purín. Se encontró una amplia variabilidad en la composición de piensos y purines. Las granjas del Mediterráneo tenían mayor pH (P<0,001) y concentración de cenizas (P =0,02) en el purín que las del Centro. El tipo de granja también afectó al contenido de extracto etéreo (EE) del purín (P =0,02), observando los valores más elevados en las instalaciones de animales jóvenes. Los resultados sugieren un efecto tampón de la fibra de la dieta en el pH del purín y una relación directa (P<0,05) con el contenido de fibra fecal. El contenido de proteína del pienso no afectó al contenido de nitrógeno del purín, pero disminuyó (P=0,003) la concentración de sólidos totales (ST) y de sólidos volátiles (SV). Se obtuvieron modelos de predicción de la emisión potencial de NH3 (R2=0,89) y CH4 (R2=0,61) partir de la composición del purín. Los espectros NIRS mostraron una buena precisión para la estimación de la mayor parte de los constituyentes, con coeficientes de determinación de validación cruzada (R2cv) superiores a 0,90, así como para la predicción del potencial de emisiones de NH3 y CH4 (R2cv=0,84 y 0,68, respectivamente). El experimento 2 fue realizado para investigar los efectos del nivel de inclusión de dos fuentes de sub-productos fibrosos: pulpa de naranja (PN) y pulpa de algarroba (PA), en dietas iso-fibrosas de cerdos de cebo, sobre la composición del purín y las emisiones potenciales de NH3 y CH4. Treinta cerdos (85,4±12,3 kg) fueron alimentados con cinco dietas iso-nutritivas: control comercial trigo/cebada (C) y cuatro dietas experimentales incluyendo las dos fuentes de sub-productos a dos niveles (75 y 150 g/kg) en una estructura 2 × 2 factorial. Después de 14 días de periodo de adaptación, heces y orina fueron recogidas separadamente durante 7 días para medir la digestibilidad de los nutrientes y el nitrógeno (N) excretado (6 réplicas por dieta) en cerdos alojados individualmente en jaulas metabólicas. Las emisiones de NH3 y CH4 fueron medidas después de la recogida de los purínes durante 11 y 100 días respectivamente. La fuente y el nivel de subproductos fibrosos afectó a la eficiencia digestiva de diferentes formas, ya que los coeficientes de digestibilidad total aparente (CDTA) para la materia seca (MS), materia orgánica (MO), fracciones fibrosas y energía bruta (EB) aumentaron con la PN pero disminuyeron con la inclusión de PA (P<0,05). El CDTA de proteína bruta (PB) disminuyó con la inclusión de las dos fuentes de fibra, siendo más bajo al mayor nivel de inclusión. La concentración fecal de fracciones fibrosas aumentó (P<0,05) con el nivel de inclusión de PA pero disminuyó con el de PN (P<0,01). El nivel más alto de las dos fuentes de fibra en el pienso aumentó (P<0,02) el contenido de PB fecal pero disminuyó el contenido de N de la orina (de 205 para 168 g/kg MS, P<0,05) en todas las dietas suplementadas comparadas con la dieta C. Adicionalmente, las proporciones de nitrógeno indigerido, nitrógeno soluble en agua, nitrógeno bacteriano y endógeno excretado en heces no fueron afectados por los tratamientos. Las características iniciales del purín no difirieron entre las diferentes fuentes y niveles de fibra, excepto para el pH que disminuyó con la inclusión de altos niveles de sub-productos. La emisión de NH3 por kg de purín fue más baja en todas las dietas suplementadas con fibras que en la dieta C (2,44 vs.1,81g de promedio, P<0,05). Además, purines de dietas suplementadas con alto nivel de sub-productos tendieron (P<0,06) a emitir menos NH3 por kg de nitrógeno total y mostraron un potencial más bajo para emitir CH4, independientemente de la fuente de fibra. El experimento 3 investigó los efectos de la fuente de proteína en dietas prácticas. Tres piensos experimentales fueron diseñados para sustituir una mescla de harina y cascarilla de soja (SOJ) por harina de girasol (GIR) o por DDGS del trigo (DDGST). La proporción de otros ingredientes fue modificada para mantener los contenidos de nutrientes similares a través de las dietas. El cambio en la fuente de proteína dio lugar a diferencias en el contenido de fibra neutro detergente ligada a proteína bruta (FNDPB), fibra soluble (FS) y lignina ácido detergente (LAD) en la dieta. Veinticuatro cerdos (ocho por dieta), con 52,3 o 60,8 kg en la primera y segunda tanda respectivamente, fueron alojados individualmente en jaulas metabólicas. Durante un periodo de 7 días fue determinado el balance de MS, el CDTA de los nutrientes y la composición de heces y orina. Se realizó el mismo procedimiento del experimento 2 para medir las emisiones de NH3 y CH4 de los purines de cada animal. Ni la ingestión de MS ni el CDTA de la MS o de la energía fueron diferentes entre las dietas experimentales, pero el tipo de pienso afectó (P<0.001) la digestibilidad de la PB, que fue mayor para GIR (0,846) que para SOJ (0,775), mientras que la dieta DDGST mostró un valor intermedio (0,794). La concentración fecal de PB fue por tanto influenciada (P<0,001) por el tratamiento, observándose la menor concentración de PB en la dieta GIR y la mayor en la dieta SOJ. La proporción de N excretado en orina o heces disminuyó de 1,63 en la dieta GIR hasta 0,650 en la dieta SOJ, como consecuencia de perdidas más bajas en orina y más altas en heces, con todas las fracciones de nitrógeno fecales creciendo en paralelo a la excreción total. Este resultado fue paralelo a una disminución de la emisión potencial de NH3 (g/kg purín) en la dieta SOJ con respecto a la dieta GIR (desde 1,82 a 1,12, P<0,05), dando valores intermedios (1,58) para los purines de la dieta DDGST. Por otro lado, el CDTA de la FS y de la fibra neutro detergente (FND) fueron afectados (P<0,001 y 0,002, respectivamente) por el tipo de dieta, siendo más bajas en la dieta GIR que en la dieta SOJ; además, se observó un contenido más alto de FND (491 vs. 361g/kg) en la MS fecal para la dieta GIR que en la dieta SOJ, presentando la dieta DDGST valores intermedios. El grado de lignificación de la FND (FAD/FND x 100) de las heces disminuyó en el orden GIR>DDGST>SOJ (desde 0,171 hasta 0,109 y 0,086, respectivamente) en paralelo a la disminución del potencial de emisión de CH4 por g de SV del purín (desde 301 a 269 y 256 mL, respectivamente). Todos los purines obtenidos en estos tres experimentos y Antezana et al. (2015) fueron usados para desarrollar nuevas calibraciones con la tecnología NIRS, para predecir la composición del purín y el potencial de las emisiones de gases. Se observó una buena precisión (R2cv superior a 0,92) de las calibraciones cuando muestras de los ensayos controlados (2, 3 y Antezana et al., 2015) fueron añadidas, aumentando el rango de variación. Una menor exactitud fue observada para TAN y emisiones de NH3 y CH4, lo que podría explicarse por una menor homogeneidad en la distribución de las muestras cuando se amplía el rango de variación del estudio. ABSTRACT This PhD thesis was developed to study the emissions of ammonia (NH3) and methane (CH4) from pig slurry and the effects caused by changes on diet formulation. For these proposes three studies were conducted. Experiment 1 aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential CH4 and NH3 emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (P<0.001) and ash (P=0.02) concentration than those located at the centre of Spain. Also, type of farm affected ether extract (EE) content of the slurry (P=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (P<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content (N) but decreased (P=0.003) in total solid (TS) and volatile solids (VS) concentration. Prediction models of potential NH3 emissions (R2=0.89) and biochemical CH4 potential (B0) (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents with coefficient of determination of cross validation (R2cv) above 0.90 and a similar accuracy of prediction of potential NH3 and CH4 emissions (R2cv=0.84 and 0.68, respectively) thus models based on slurry composition from commercial farms. Experiment 2 was conducted to investigate the effects of increasing the level of two sources of fibrous by-products, orange pulp (OP) and carob meal (CM), in iso-fibrous diets for growing-finishing pig, slurry composition and potential NH3 and CH4 emissions. Thirty pigs (85.4±12.3 kg) were fed five iso-nutritive diets: a commercial control wheat/barley (C) and four experimental diets including two sources of fibrous by-products OP and CM and two dietary levels (75 and 150 g/kg) in a 2 × 2 factorial arrangement. After a 14-day adaptation period, faeces and urine were collected separately for 7 days to measure nutrient digestibility and the excretory patterns of N from pigs (6 replicates per diet) housed individually in metabolic pens. For each animal, the derived NH3 and CH4 emissions were measured in samples of slurry over an 11 and 100-day storage periods, respectively. Source and level of the fibrous by-products affected digestion efficiency in a different way as the coefficients of total tract apparent digestibility (CTTAD) for dry matter (DM), organic matter (OM), fibre fractions and gross energy (GE) increased with OP but decreased with CM (P<0.05). Crude protein CTTAD decreased with the inclusion of both sources of fibre, being lower at the highest dietary level. Faecal concentration of fibre fractions increased (P<0.05) with the level of inclusion of CM but decreased with that of OP (P<0.01). High dietary level for both sources of fibre increased (P<0.02) CP faecal content but urine N content decreased (from 205 to 168 g/kg DM, P<0.05) in all the fibre-supplemented compared to C diet. Additionally, the proportions of undigested dietary, water soluble, and bacterial and endogenous debris of faecal N excretion were not affected by treatments. The initial slurry characteristics did not differ among different fibre sources and dietary levels, except pH, which decreased at the highest by-product inclusion levels. Ammonia emission per kg of slurry was lower in all the fibre-supplemented diets than in C diet (2.44 vs. 1.81g as average, P<0.05). Additionally, slurries from the highest dietary level of by-products tended (P<0.06) to emit less NH3 per kg of initial total Kjeldahl nitrogen (TKN) and showed a lower biochemical CH4 potential , independently of the fibre source. Experiment 3 investigated the effects of protein source in practical diets. Three experimental feeds were designed to substitute a mixture of soybean meal and soybean hulls (SB diet) with sunflower meal (SFM) or wheat DDGS (WDDGS). The proportion of other ingredients was also modified in order to maintain similar nutrient contents across diets. Changes in protein source led to differences in dietary content of neutral detergent insoluble crude protein (NDICP), soluble fibre (SF) and acid detergent lignin (ADL). Twenty-four pigs (eight per diet), weighing 52.3 or 60.8 kg at the first and second batch respectively, were housed individually in metabolic pens to determine during a 7-day period DM balance, CTTAD of nutrients, and faecal and urine composition. Representative slurry samples from each animal were used to measure NH3 and CH4 emissions over an 11 and or 100-day storage period, respectively. Neither DM intake, nor DM or energy CTTAD differed among experimental diets, but type of feed affected (P<0.001) CP digestibility, which was highest for SFM (0.846) than for SB (0.775) diet, with WDDGS-based diet giving an intermediate value (0.794). Faecal DM composition was influenced (P<0.001) accordingly, with the lowest CP concentration found for diet SFM and the highest for SB. The ratio of N excreted in urine or faeces decreased from SFM (1.63) to SB diet (0.650), as a consequence of both lower urine and higher faecal losses, with all the faecal N fractions increasing in parallel to total excretion. This result was parallel to a decrease of potential NH3 emission (g/kg slurry) in diet SB with respect to diet SFM (from 1.82 to 1.12, P<0.05), giving slurry from WDDGS-based diet an intermediate value (1.58). Otherwise, SF and insoluble neutral detergent fibre (NDF) CTTAD were affected (P<0.001 and P=0.002, respectively) by type of diet, being lower for SFM than in SB-diet; besides, a higher content of NDF (491 vs. 361 g/kg) in faecal DM was observed for SFM with respect to SB based diet, with WDDGS diet being intermediate. Degree of lignification of NDF (ADL/NDF x 100) of faeces decreased in the order SFM>WDDGS>SB (from 0.171 to 0.109 and 0.086, respectively) in parallel to a decrease of biochemical CH4 potential per g of VS of slurry (from 301 to 269 and 256 ml, respectively). All slurry samples obtained from these three experiments and Antezana et al. (2015) were used to develop new calibrations with NIRS technology, to predict the slurry composition and potential gaseous emissions of samples with greater variability in comparison to experiment 1. Better accuracy (R2cv above 0.92) was observed for calibrations when samples from controlled trials experiments (2, 3 and Antezana et al., 2015) were included, increasing the range of variation. A lower accuracy was observed for TAN, NH3 and CH4 gaseous emissions, which might be explained by the less homogeneous distribution with a wider range of data.
Resumo:
Pig slurry is a valuable fertilizer for crop production but at the same time its management may pose environmental risks. Slurry samples were collected from 77 commercial farms of four animal categories (gestating and lactating sows, nursery piglets and growing pigs) and analyzed for macronutrients, micronutrients, heavy metals and volatile fatty acids. Emissions of ammonia (NH3) and biochemical methane potential (BMP) were quantified. Slurry electrical conductivity, pH, dry matter content and ash content were also determined. Data analysis included an analysis of correlations among variables, the development of prediction models for gaseous emissions and the analysis of nutritional content of slurries for crop production. Descriptive information is provided in this work and shows a wide range of variability in all studied variables. Animal category affected some physicochemical parameters, probably as a consequence of different slurry management and use of cleaning water. Slurries from gestating sows and growing pigs tended to be more concentrated in nutrients, whereas the slurry from lactating sows and nursery piglets tended to be more diluted. Relevant relationships were found among slurry characteristics expressed in fresh basis and gas emissions. Predictive models using on-farm measurable parameters were obtained for NH3 (R2 = 0.51) and CH4
Resumo:
5-HT-moduline is an endogenous tetrapeptide [Leu-Ser-Ala-Leu (LSAL)] that was first isolated from bovine brain tissue. To understand the physiological role of this tetrapeptide, we studied the localization of 5-HT-moduline binding sites in rat and mouse brains. Quantitative data obtained with a gaseous detector of β-particles (β-imager) indicated that [3H]-5-HT-moduline bound specifically to rat brain sections with high affinity (Kd = 0.77 nM and Bmax = 0.26 dpm/mm2). Using film autoradiography in parallel, we found that 5-HT-moduline binding sites were expressed in a variety of rat and mouse brain structures. In 5-HT1B receptor knock-out mice, the specific binding of [3H]-5-HT-moduline was not different from background labeling, indicating that 5-HT-moduline targets are exclusively located on the 5-HT1B receptors. Although the distribution of 5-HT-moduline binding sites was similar to that of 5-HT1B receptors, they did not overlap totally. Differences in distribution patterns were found in regions containing either high levels of 5-HT1B receptors such as globus pallidus and subiculum that were poorly labeled or in other regions such as dentate gyrus of hippocampus and cortex where the relative density of 5-HT-moduline binding sites was higher than that of 5-HT1B receptors. In conclusion, our data, based on autoradiographic localization, indicate that 5-HT-moduline targets are located on 5-HT1B receptors present both on 5-HT afferents and postsynaptic neurons. By interacting specifically with 5-HT1B receptors, this tetrapeptide may play a pivotal role in pathological states such as stress that involves the dysfunction of 5-HT neurotransmission.
Resumo:
By using a simplified model of small open liquid-like clusters with surface effects, in the gas phase, it is shown how the statistical thermodynamics of small systems can be extended to include metastable supersaturated gaseous states not too far from the gas–liquid equilibrium transition point. To accomplish this, one has to distinguish between mathematical divergence and physical convergence of the open-system partition function.
Resumo:
By means of optical pumping with laser light it is possible to enhance the nuclear spin polarization of gaseous xenon by four to five orders of magnitude. The enhanced polarization has allowed advances in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI), including polarization transfer to molecules and imaging of lungs and other void spaces. A critical issue for such applications is the delivery of xenon to the sample while maintaining the polarization. Described herein is an efficient method for the introduction of laser-polarized xenon into systems of biological and medical interest for the purpose of obtaining highly enhanced NMR/MRI signals. Using this method, we have made the first observation of the time-resolved process of xenon penetrating the red blood cells in fresh human blood—the xenon residence time constant in the red blood cells was measured to be 20.4 ± 2 ms. The potential of certain biologically compatible solvents for delivery of laser-polarized xenon to tissues for NMR/MRI is discussed in light of their respective relaxation and partitioning properties.
Resumo:
The gaseous second messenger nitric oxide (NO), which readily diffuses in brain tissue, has been implicated in cerebellar long-term depression (LTD), a form of synaptic plasticity thought to be involved in cerebellar learning. Can NO diffusion facilitate cerebellar learning? The inferior olive (IO) cells, which provide the error signals necessary for modifying the granule cell–Purkinje cell (PC) synapses by LTD, fire at ultra-low firing rates in vivo, rarely more than 2–4 spikes within a second. In this paper, we show that NO diffusion can improve the transmission of sporadic IO error signals to PCs within cerebellar cortical functional units, or microzones. To relate NO diffusion to adaptive behavior, we add NO diffusion and a “volumic” LTD learning rule, i.e., a learning rule that depends both on the synaptic activity and on the NO concentration at the synapse, to a cerebellar model for arm movement control. Our results show that biologically plausible diffusion leads to an increase in information transfer of the error signals to the PCs when the IO firing rate is ultra-low. This, in turn, enhances cerebellar learning as shown by improved performance in an arm-reaching task.
Resumo:
Nitric oxide (NO•) is a toxin, and various life forms appear to have evolved strategies for its detoxification. NO•-resistant mutants of Escherichia coli were isolated that rapidly consumed NO•. An NO•-converting activity was reconstituted in extracts that required NADPH, FAD, and O2, was cyanide-sensitive, and produced NO3−. This nitric oxide dioxygenase (NOD) contained 19 of 20 N-terminal amino acids identical to those of the E. coli flavohemoglobin. Furthermore, NOD activity was produced by the flavohemoglobin gene and was inducible by NO•. Flavohemoglobin/NOD-deficient mutants were also sensitive to growth inhibition by gaseous NO•. The results identify a function for the evolutionarily conserved flavohemoglobins and, moreover, suggest that NO• detoxification may be a more ancient function for the widely distributed hemoglobins, and associated methemoglobin reductases, than dioxygen transport and storage.
Resumo:
Inflammatory pain manifests as spontaneous pain and pain hypersensitivity. Spontaneous pain reflects direct activation of specific receptors on nociceptor terminals by inflammatory mediators. Pain hypersensitivity is the consequence of early posttranslational changes, both in the peripheral terminals of the nociceptor and in dorsal horn neurons, as well as later transcription-dependent changes in effector genes, again in primary sensory and dorsal horn neurons. This inflammatory neuroplasticity is the consequence of a combination of activity-dependent changes in the neurons and specific signal molecules initiating particular signal-transduction pathways. These pathways phosphorylate membrane proteins, changing their function, and activate transcription factors, altering gene expression. Two distinct aspects of sensory neuron function are changed as a result of these processes, basal sensitivity, or the capacity of peripheral stimuli to evoke pain, and stimulus-evoked hypersensitivity, the capacity of certain inputs to generate prolonged alterations in the sensitivity of the system. Posttranslational changes largely alter basal sensitivity. Transcriptional changes both potentiate the system and alter neuronal phenotype. Potentiation occurs as a result of the up-regulation in the dorsal root ganglion of centrally acting neuromodulators and simultaneously in the dorsal horn of their receptors. This means that the response to subsequent inputs is augmented, particularly those that induce stimulus-induced hypersensitivity. Alterations in phenotype includes the acquisition by A fibers of neurochemical features typical of C fibers, enabling these fibers to induce stimulus-evoked hypersensitivity, something only C fiber inputs normally can do. Elucidation of the molecular mechanisms responsible provides new opportunities for therapeutic approaches to managing inflammatory pain.