754 resultados para Fuzzy logic system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is claimed that it is the semantic relationship between two paired concepts what determines the emergence of different types of neutrality, namely indeterminacy, ambivalence and conflict, widely used under different frameworks (possibly under different names). It will be shown the potential relevance of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pesquisa apresenta uma adaptação do modelo matemático de lógica nebulosa. A adaptação é uma alternativa capaz de representar o comportamento de uma variável subjetiva ao longo de um intervalo de tempo, assim como tratar variáveis estáticas (como o modelo computacional existente). Pesquisas realizadas apontam para uma lacuna no tratamento de variáveis dinâmicas (dependência no tempo) e a proposta permite que o contexto em que as variáveis estão inseridas tenha um papel no entendimento e tomada de decisão de problemas com estas características. Modelos computacionais existentes tratam a questão temporal como sequenciador de eventos ou custo, sem considerar a influência de fenômenos passados na condição corrente, ao contrário do modelo proposto que permite uma contribuição dos acontecimentos anteriores no entendimento e tratamento do estado atual. Apenas para citar alguns exemplos, o uso da solução proposta pode ser aplicado na determinação de nível de conforto em transporte público ou auxiliar na aferição de grau de risco de investimentos no mercado de ações. Em ambos os casos, comparações realizadas entre o modelo de lógica nebulosa existente e a adaptação sugerida apontam uma diferença no resultado final que pode ser entendida como uma maior qualidade na informação de suporte à tomada de decisão.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O processo de tomada de decisão que envolve a priorização e a seleção de projetos de investimentos na indústria do petróleo está longe de ser uma tarefa trivial. Ao mesmo tempo em que a empresa deve buscar relações favoráveis entre risco e retorno econômico-financeiro também deve se alinhar cada vez mais aos princípios do desenvolvimento sustentável em seus negócios. Em se tratando do caso da indústria petrolífera brasileira, formada essencialmente por um monopólio estatal, esta tarefa se torna ainda mais difícil, já que uma série de interesses públicos relacionados ao investimento também devem ser considerados. Sendo assim, o objetivo principal desta pesquisa foi o desenvolvimento e a aplicação de um modelo original de análise usando múltiplos critérios que auxiliasse na priorização e na seleção de projetos de investimentos nas refinarias de petróleo brasileiras. Utilizou-se uma metodologia de pesquisa quantitativa com o uso de diversos artefatos de matemática aplicada capazes de lidar adequadamente com as avaliações muitas vezes incompletas e subjetivas que caracterizam o problema da análise de investimentos em refinarias de petróleo. Ao final do trabalho, conseguiu-se obter um modelo suficientemente simples, ao ponto de ser facilmente implementado em uma planilha eletrônica, robusto, ao ser capaz de lidar de maneira bastante adequada com as principais peculiaridades que envolvem o setor do refino de petróleo no Brasil e flexível, de maneira que os critérios de análise e as alternativas de decisão pudessem ser facilmente adicionados, removidos ou alterados de acordo com as necessidades específicas exigidas para cada caso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En esta práctica se desarrollará el funcionamiento de un sistema experto difuso. El alumno debe desarrollar y probar un sistema experto, utilizando lógica difusa, que sea capaz de estabilizar un péndulo invertido.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study is to characterise students’ understanding of the function-derivative relationship when learning economic concepts. To this end, we use a fuzzy metric (Chang 1968) to identify the development of economic concept understanding that is defined by the function-derivative relationship. The results indicate that the understanding of these economic concepts is linked to students’ capacity to perform conversions and treatments between the algebraic and graphic registers of the function-derivative relationship when extracting the economic meaning of concavity/convexity in graphs of functions using the second derivative.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generalization performance in recurrent neural networks is enhanced by cascading several networks. By discretizing abstractions induced in one network, other networks can operate on a coarse symbolic level with increased performance on sparse and structural prediction tasks. The level of systematicity exhibited by the cascade of recurrent networks is assessed on the basis of three language domains. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic algorithms (GAs) are known to locate the global optimal solution provided sufficient population and/or generation is used. Practically, a near-optimal satisfactory result can be found by Gas with a limited number of generations. In wireless communications, the exhaustive searching approach is widely applied to many techniques, such as maximum likelihood decoding (MLD) and distance spectrum (DS) techniques. The complexity of the exhaustive searching approach in the MLD or the DS technique is exponential in the number of transmit antennas and the size of the signal constellation for the multiple-input multiple-output (MIMO) communication systems. If a large number of antennas and a large size of signal constellations, e.g. PSK and QAM, are employed in the MIMO systems, the exhaustive searching approach becomes impractical and time consuming. In this paper, the GAs are applied to the MLD and DS techniques to provide a near-optimal performance with a reduced computational complexity for the MIMO systems. Two different GA-based efficient searching approaches are proposed for the MLD and DS techniques, respectively. The first proposed approach is based on a GA with sharing function method, which is employed to locate the multiple solutions of the distance spectrum for the Space-time Trellis Coded Orthogonal Frequency Division Multiplexing (STTC-OFDM) systems. The second approach is the GA-based MLD that attempts to find the closest point to the transmitted signal. The proposed approach can return a satisfactory result with a good initial signal vector provided to the GA. Through simulation results, it is shown that the proposed GA-based efficient searching approaches can achieve near-optimal performance, but with a lower searching complexity comparing with the original MLD and DS techniques for the MIMO systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research literature on metalieuristic and evolutionary computation has proposed a large number of algorithms for the solution of challenging real-world optimization problems. It is often not possible to study theoretically the performance of these algorithms unless significant assumptions are made on either the algorithm itself or the problems to which it is applied, or both. As a consequence, metalieuristics are typically evaluated empirically using a set of test problems. Unfortunately, relatively little attention has been given to the development of methodologies and tools for the large-scale empirical evaluation and/or comparison of metaheuristics. In this paper, we propose a landscape (test-problem) generator that can be used to generate optimization problem instances for continuous, bound-constrained optimization problems. The landscape generator is parameterized by a small number of parameters, and the values of these parameters have a direct and intuitive interpretation in terms of the geometric features of the landscapes that they produce. An experimental space is defined over algorithms and problems, via a tuple of parameters for any specified algorithm and problem class (here determined by the landscape generator). An experiment is then clearly specified as a point in this space, in a way that is analogous to other areas of experimental algorithmics, and more generally in experimental design. Experimental results are presented, demonstrating the use of the landscape generator. In particular, we analyze some simple, continuous estimation of distribution algorithms, and gain new insights into the behavior of these algorithms using the landscape generator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this letter, we propose a class of self-stabilizing learning algorithms for minor component analysis (MCA), which includes a few well-known MCA learning algorithms. Self-stabilizing means that the sign of the weight vector length change is independent of the presented input vector. For these algorithms, rigorous global convergence proof is given and the convergence rate is also discussed. By combining the positive properties of these algorithms, a new learning algorithm is proposed which can improve the performance. Simulations are employed to confirm our theoretical results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental studies were carried out on a bench-scale nitrogen removal system with a predenitrification configuration to gain insights into the spatial and temporal variations of DO, pH and ORP in such systems. It is demonstrated that these signals correlate strongly with the operational states of the system, and could therefore be used as system performance indicators. The DO concentration in the first aerobic zone, when receiving constant aeration, and the net pH change between the last and first aerobic zones display strong correlations with the influent ammonia concentration for the domestic wastewater used in this study. The pH profile along the aerobic zones gives good indication on the extent of nitrification. The experimental results also showed a good correlation between ORP values in the last aerobic zone and effluent ammonia and nitrate concentrations, provided that DO in this zone is controlled at a constant level. These results suggest that the DO, pH and ORP sensors could potentially be used as alternatives to the on-line nutrient sensors for the control of continuous systems. An idea of using a fuzzy inference system to make an integrated use of these signals for on-line aeration control is presented and demonstrated on the bench-scale system with promising results. The use of these sensors has to date only been demonstrated in intermittent systems, such as sequencing batch reactor systems.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This special issue is a collection of the selected papers published on the proceedings of the First International Conference on Advanced Data Mining and Applications (ADMA) held in Wuhan, China in 2005. The articles focus on the innovative applications of data mining approaches to the problems that involve large data sets, incomplete and noise data, or demand optimal solutions.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In empirical studies of Evolutionary Algorithms, it is usually desirable to evaluate and compare algorithms using as many different parameter settings and test problems as possible, in border to have a clear and detailed picture of their performance. Unfortunately, the total number of experiments required may be very large, which often makes such research work computationally prohibitive. In this paper, the application of a statistical method called racing is proposed as a general-purpose tool to reduce the computational requirements of large-scale experimental studies in evolutionary algorithms. Experimental results are presented that show that racing typically requires only a small fraction of the cost of an exhaustive experimental study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An emerging issue in the field of astronomy is the integration, management and utilization of databases from around the world to facilitate scientific discovery. In this paper, we investigate application of the machine learning techniques of support vector machines and neural networks to the problem of amalgamating catalogues of galaxies as objects from two disparate data sources: radio and optical. Formulating this as a classification problem presents several challenges, including dealing with a highly unbalanced data set. Unlike the conventional approach to the problem (which is based on a likelihood ratio) machine learning does not require density estimation and is shown here to provide a significant improvement in performance. We also report some experiments that explore the importance of the radio and optical data features for the matching problem.