865 resultados para Frontotemporal lobar degeneration
Resumo:
The idea of retinal cell transplantation as a potential treatment for age-related retinal degeneration, a leading cause of blindness in the Western world, has been around for a number of decades. To date, however, it has not been entirely successful; one of the main reasons for this is the lack of an ideal substratum for the retinal cells, specifically for the growth of retinal pigment epithelial cells prior to transplantation. This chapter reviews the reasoning behind this potential treatment, the development of animal transplantation models for human trials, the prerequisites of an ideal substratum, the past and current research on substratum materials, and the potential for future developments in this area.
Resumo:
Background: Opiod dependence is a chronic severe brain disorder associated with enormous health and social problems. The relapse back to opioid abuse is very high especially in early abstinence, but neuropsychological and neurophysiological deficits during opioid abuse or soon after cessation of opioids are scarcely investigated. Also the structural brain changes and their correlations with the length of opioid abuse or abuse onset age are not known. In this study the cognitive functions, neural basis of cognitive dysfunction, and brain structural changes was studied in opioid-dependent patients and in age and sex matched healthy controls. Materials and methods: All subjects participating in the study, 23 opioid dependents of whom, 15 were also benzodiazepine and five cannabis co-dependent and 18 healthy age and sex matched controls went through Structured Clinical Interviews (SCID) to obtain DSM-IV axis I and II diagnosis and to exclude psychiatric illness not related to opioid dependence or personality disorders. Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) measurements were done on 21 opioid-dependent individuals on the day of hospitalization for withdrawal therapy. The neural basis of auditory processing was studied and pre-attentive attention and sensory memory were investigated. During the withdrawal 15 opioid-dependent patients participated in neuropsychological tests, measuring fluid intelligence, attention and working memory, verbal and visual memory, and executive functions. Fifteen healthy subjects served as controls for the MEG-EEG measurements and neuropsychological assessment. The brain magnetic resonance imaging (MRI) was obtained from 17 patients after approximately two weeks abstinence, and from 17 controls. The areas of different brain structures and the absolute and relative volumes of cerebrum, cerebral white and gray matter, and cerebrospinal fluid (CSF) spaces were measured and the Sylvian fissure ratio (SFR) and bifrontal ratio were calculated. Also correlation between the cerebral measures and neuropsychological performance was done. Results: MEG-EEG measurements showed that compared to controls the opioid-dependent patients had delayed mismatch negativity (MMN) response to novel sounds in the EEG and P3am on the contralateral hemisphere to the stimulated ear in MEG. The equivalent current dipole (ECD) of N1m response was stronger in patients with benzodiazepine co-dependence than those without benzodiazepine co-dependence or controls. In early abstinence the opioid dependents performed poorer than the controls in tests measuring attention and working memory, executive function and fluid intelligence. Test results of the Culture Fair Intelligence Test (CFIT), testing fluid intelligence, and Paced Auditory Serial Addition Test (PASAT), measuring attention and working memory correlated positively with the days of abstinence. MRI measurements showed that the relative volume of CSF was significantly larger in opioid dependents, which could also be seen in visual analysis. Also Sylvian fissures, expressed by SFR were wider in patients, which correlated negatively with the age of opioid abuse onset. In controls the relative gray matter volume had a positive correlation with composite cognitive performance, but this correlation was not found in opioid dependents in early abstinence. Conclusions: Opioid dependents had wide Sylvian fissures and CSF spaces indicating frontotemporal atrophy. Dilatation of Sylvian fissures correlated with the abuse onset age. During early withdrawal cognitive performance of opioid dependents was impaired. While intoxicated the pre-attentive attention to novel stimulus was delayed and benzodiazepine co-dependence impaired sound detection. All these changes point to disturbances on frontotemporal areas.
Resumo:
Backround and Purpose The often fatal (in 50-35%) subarachnoid hemorrhage (SAH) caused by saccular cerebral artery aneurysm (SCAA) rupture affects mainly the working aged population. The incidence of SAH is 10-11 / 100 000 in Western countries and twice as high in Finland and Japan. The estimated prevalence of SCAAs is around 2%. Many of those never rupture. Currently there are, however, no diagnostic methods to identify rupture-prone SCAAs from quiescent, (dormant) ones. Finding diagnostic markers for rupture-prone SCAAs is of primary importance since a SCAA rupture has such a sinister outcome, and all current treatment modalities are associated with morbidity and mortality. Also the therapies that prevent SCAA rupture need to be developed to as minimally invasive as possible. Although the clinical risk factors for SCAA rupture have been extensively studied and documented in large patient series, the cellular and molecular mechanisms how these risk factors lead to SCAA wall rupture remain incompletely known. Elucidation of the molecular and cellular pathobiology of the SCAA wall is needed in order to develop i) novel diagnostic tools that could identify rupture-prone SCAAs or patients at risk of SAH, and to ii) develop novel biological therapies that prevent SCAA wall rupture. Materials and Methods In this study, histological samples from unruptured and ruptured SCAAs and plasma samples from SCAA carriers were compared in order to identify structural changes, cell populations, growth factor receptors, or other molecular markers that would associate with SCAA wall rupture. In addition, experimental saccular aneurysm models and experimental models of mechanical vascular injury were used to study the cellular mechanisms of scar formation in the arterial wall, and the adaptation of the arterial wall to increased mechanical stress. Results and Interpretation Inflammation and degeneration of the SCAA wall, namely loss of mural cells and degradation of the wall matrix, were found to associate with rupture. Unruptured SCAA walls had structural resemblance with pads of myointimal hyperplasia or so called neointima that characterizes early atherosclerotic lesions, and is the repair and adaptation mechanism of the arterial wall after injury or increased mechanical stress. As in pads of myointimal hyperplasia elsewhere in the vasculature, oxidated LDL was found in the SCAA walls. Immunity against OxLDL was demonstrated in SAH patients with detection of circulating anti-oxidized LDL antibodies, which were significantly associated with the risk of rupture in patients with solitary SCAAs. Growth factor receptors associated with arterial wall remodeling and angiogenesis were more expressed in ruptured SCAA walls. In experimental saccular aneurysm models, capillary growth, arterial wall remodeling and neointima formation were found. The neointimal cells were shown to originate from the experimental aneurysm wall with minor contribution from the adjacent artery, and a negligible contribution of bone marrow-derived neointimal cells. Since loss of mural cells characterizes ruptured human SCAAs and likely impairs the adaptation and repair mechanism of ruptured or rupture-prone SCAAs, we investigated also the hypothesis that bone marrow-derived or circulating neointimal precursor cells could be used to enhance neointima formation and compensate the impaired repair capacity in ruptured SCAA walls. However, significant contribution of bone marrow cells or circulating mononuclear cells to neointima formation was not found.
Resumo:
The adequacy of anesthesia has been studied since the introduction of balanced general anesthesia. Commercial monitors based on electroencephalographic (EEG) signal analysis have been available for monitoring the hypnotic component of anesthesia from the beginning of the 1990s. Monitors measuring the depth of anesthesia assess the cortical function of the brain, and have gained acceptance during surgical anesthesia with most of the anesthetic agents used. However, due to frequent artifacts, they are considered unsuitable for monitoring consciousness in intensive care patients. The assessment of analgesia is one of the cornerstones of general anesthesia. Prolonged surgical stress may lead to increased morbidity and delayed postoperative recovery. However, no validated monitoring method is currently available for evaluating analgesia during general anesthesia. Awareness during anesthesia is caused by an inadequate level of hypnosis. This rare but severe complication of general anesthesia may lead to marked emotional stress and possibly posttraumatic stress disorder. In the present series of studies, the incidence of awareness and recall during outpatient anesthesia was evaluated and compared with that of in inpatient anesthesia. A total of 1500 outpatients and 2343 inpatients underwent a structured interview. Clear intraoperative recollections were rare the incidence being 0.07% in outpatients and 0.13% in inpatients. No significant differences emerged between outpatients and inpatients. However, significantly smaller doses of sevoflurane were administered to outpatients with awareness than those without recollections (p<0.05). EEG artifacts in 16 brain-dead organ donors were evaluated during organ harvest surgery in a prospective, open, nonselective study. The source of the frontotemporal biosignals in brain-dead subjects was studied, and the resistance of bispectral index (BIS) and Entropy to the signal artifacts was compared. The hypothesis was that in brain-dead subjects, most of the biosignals recorded from the forehead would consist of artifacts. The original EEG was recorded and State Entropy (SE), Response Entropy (RE), and BIS were calculated and monitored during solid organ harvest. SE differed from zero (inactive EEG) in 28%, RE in 29%, and BIS in 68% of the total recording time (p<0.0001 for all). The median values during the operation were SE 0.0, RE 0.0, and BIS 3.0. In four of the 16 organ donors, EEG was not inactive, and unphysiologically distributed, nonreactive rhythmic theta activity was present in the original EEG signal. After the results from subjects with persistent residual EEG activity were excluded, SE, RE, and BIS differed from zero in 17%, 18%, and 62% of the recorded time, respectively (p<0.0001 for all). Due to various artifacts, the highest readings in all indices were recorded without neuromuscular blockade. The main sources of artifacts were electrocauterization, electromyography (EMG), 50-Hz artifact, handling of the donor, ballistocardiography, and electrocardiography. In a prospective, randomized study of 26 patients, the ability of Surgical Stress Index (SSI) to differentiate patients with two clinically different analgesic levels during shoulder surgery was evaluated. SSI values were lower in patients with an interscalene brachial plexus block than in patients without an additional plexus block. In all patients, anesthesia was maintained with desflurane, the concentration of which was targeted to maintain SE at 50. Increased blood pressure or heart rate (HR), movement, and coughing were considered signs of intraoperative nociception and treated with alfentanil. Photoplethysmographic waveforms were collected from the contralateral arm to the operated side, and SSI was calculated offline. Two minutes after skin incision, SSI was not increased in the brachial plexus block group and was lower (38 ± 13) than in the control group (58 ± 13, p<0.005). Among the controls, one minute prior to alfentanil administration, SSI value was higher than during periods of adequate antinociception, 59 ± 11 vs. 39 ± 12 (p<0.01). The total cumulative need for alfentanil was higher in controls (2.7 ± 1.2 mg) than in the brachial plexus block group (1.6 ± 0.5 mg, p=0.008). Tetanic stimulation to the ulnar region of the hand increased SSI significantly only among patients with a brachial plexus block not covering the site of stimulation. Prognostic value of EEG-derived indices was evaluated and compared with Transcranial Doppler Ultrasonography (TCD), serum neuron-specific enolase (NSE) and S-100B after cardiac arrest. Thirty patients resuscitated from out-of-hospital arrest and treated with induced mild hypothermia for 24 h were included. Original EEG signal was recorded, and burst suppression ratio (BSR), RE, SE, and wavelet subband entropy (WSE) were calculated. Neurological outcome during the six-month period after arrest was assessed with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). Twenty patients had a CPC of 1-2, one patient had a CPC of 3, and nine patients died (CPC 5). BSR, RE, and SE differed between good (CPC 1-2) and poor (CPC 3-5) outcome groups (p=0.011, p=0.011, p=0.008, respectively) during the first 24 h after arrest. WSE was borderline higher in the good outcome group between 24 and 48 h after arrest (p=0.050). All patients with status epilepticus died, and their WSE values were lower (p=0.022). S-100B was lower in the good outcome group upon arrival at the intensive care unit (p=0.010). After hypothermia treatment, NSE and S-100B values were lower (p=0.002 for both) in the good outcome group. The pulsatile index was also lower in the good outcome group (p=0.004). In conclusion, the incidence of awareness in outpatient anesthesia did not differ from that in inpatient anesthesia. Outpatients are not at increased risk for intraoperative awareness relative to inpatients undergoing general anesthesia. SE, RE, and BIS showed non-zero values that normally indicate cortical neuronal function, but were in these subjects mostly due to artifacts after clinical brain death diagnosis. Entropy was more resistant to artifacts than BIS. During general anesthesia and surgery, SSI values were lower in patients with interscalene brachial plexus block covering the sites of nociceptive stimuli. In detecting nociceptive stimuli, SSI performed better than HR, blood pressure, or RE. BSR, RE, and SE differed between the good and poor neurological outcome groups during the first 24 h after cardiac arrest, and they may be an aid in differentiating patients with good neurological outcomes from those with poor outcomes after out-of-hospital cardiac arrest.
Resumo:
Carotid atherosclerotic disease is a major cause of stroke, but it may remain clinically asymptomatic. The factors that turn the asymptomatic plaque into a symptomatic one are not fully understood, neither are the subtle effects that a high-grade carotid stenosis may have on the brain. The purpose of this study was to evaluate brain microcirculation, diffusion, and cognitive performance in patients with a high-grade stenosis in carotid artery, clinically either symptomatic or asymptomatic, undergoing carotid endarterectomy (CEA). We wanted to find out whether the stenoses are associated with diffusion or perfusion abnormalities of the brain or variation in the cognitive functioning of the patients, and to what extent the potential findings are affected by CEA, and compare the clinically symptomatic and asymptomatic subjects as well as strictly healthy controls. Coagulation and fibrinolytic parameters were compared with the rate microembolic signals (MES) in transcranial Doppler (TCD) and the macroscopic appearance of stenosing plaques in surgery. Patients (n=92) underwent CEA within the study. Blood samples pertaining to coagulation and fibrinolysis were collected before CEA, and the subjects underwent repeated TCD monitoring for MES. A subpopulation (n= 46) underwent MR imaging and repeated neuropsychological examination (preoperative, as well 4 and 100 days after CEA). In MRI, the average apparent diffusion coefficients were higher in the ipsilateral white matter (WM), and altough the interhemispheric difference was abolished by CEA, the levels remained higher than in controls. Symptomatic stenoses were associated with more sluggish perfusion especially in WM, and lower pulsatility of flow in TCD. All patients had poorer cognitive performance than healthy controls. Cognitive functions improved as expected by learning effect despite transient postoperative worsening in a few subjects. Improvement was greater in patients with deepest hypoperfusion, primarily in executive functions. Symptomatic stenoses were associated with higher hematocrit and tissue plasminogen activator antigen levels, as well as higher rate of MES and ulcerated plaques, and better postoperative improvement of vasoreactivity and pulsatility. In light of the findings, carotid stenosis is associated with differences in brain diffusion, perfusion, and cognition. The effect on diffusion in the ipsilateral WM, partially reversible by CEA, may be associated with WM degeneration. Asymptomatic and symptomatic subpopulations differ from each other in terms of hemodynamic adaptation and in their vascular physiological response to removal of stenosis. Although CEA may be associated with a transient cognitive decline, a true improvement of cognitive performance by CEA is possible in patients with the most pronounced perfusion deficits. Mediators of fibrinolysis and unfavourable hemorheology may contribute to the development of a symptomatic disease in patients with a high-grade stenosis.
Resumo:
Klinefelter syndrome (KS) is the most frequent karyotype disorder of male reproductive function. Since its original clinical description in 1942 and the identification of its chromosomal basis 47,XXY in 1959, the typical KS phenotype has become well recognized, but the mechanisms behind the testicular degeneration process have remained unrevealed. This prospective study was undertaken to increase knowledge about testicular function in adolescent KS boys. It comprised a longitudinal follow-up of growth, pubertal development, and serum reproductive hormone levels in 14 prepubertal and pubertal KS boys. Each boy had a testicular biopsy that was analyzed with histomorphometric and immunohistochemical methods. The KS boys had sufficient testosterone levels to allow normal onset and progression of puberty. Their serum testosterone levels remained within the low-normal range throughout puberty, but from midpuberty onwards, findings like a leveling-off in testosterone and insulin-like factor 3 (INSL3) concentrations, high gonadotropin levels, and exaggerated responses to gonadotropin-releasing hormone stimulation suggest diminished testosterone secretion. We also showed that the Leydig cell differentiation marker INSL3 may serve as a novel marker for onset and normal progression of puberty in boys. In the KS boys the number of germ cells was already markedly lower at the onset of puberty. The pubertal activation of the pituitary-testicular axis accelerated germ cell depletion, and germ cell differentiation was at least partly blocked at the spermatogonium or early primary spermatocyte stages. The presence of germ cells correlated with serum reproductive hormone levels. The immature Sertoli cells were incapable of transforming to the adult type, and during puberty the degeneration of Sertoli cells increased markedly. The older KS boys displayed an evident Leydig cell hyperplasia, as well as fibrosis and hyalinization of the interstitium and peritubular connective tissue. Altered immunoexpression of the androgen receptor (AR) suggested that in KS boys during puberty a relative androgen deficiency develops at testicular level. The impact of genetic features of the supernumerary X chromosome on the KS phenotype was also studied. The present study suggests that parental origin of the supernumerary X chromosome and the length of the CAG repeat of the AR gene influence pubertal development and testicular degeneration. The current study characterized by several means the testicular degeneration process in the testes of adolescent KS boys and confirmed that this process accelerates at the onset of puberty. Although serum reproductive hormone levels indicated no hypogonadism during early puberty, the histological analyses showed an already markedly reduced fertility potential in prepubertal KS boys. Genetic features of the X chromosome affect the KS phenotype.
Resumo:
Purpose: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. Methods: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. Results: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease. Conclusions: The MDH1 gene is not the cause of RP28-linked arRP. Our experimental strategy shows that long-range genomic PCR followed by UHTs provides an excellent system to perform a thorough screening of candidate genes for hereditary retinal degeneration.
Resumo:
Parkinson s disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic neurons of the substantia nigra (SN). Current therapies of PD do not stop the progression of the disease and the efficacy of these treatments wanes over time. Neurotrophic factors are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. Neurotrophic factors are attractive candidates for neuroprotective or even neurorestorative treatment of PD. Thus, searching for and characterizing trophic factors are highly important approaches to degenerative diseases. CDNF (cerebral dopamine neurotrophic factor) and MANF (mesencephalic astrocyte-derived neurotrophic factor) are secreted proteins that constitute a novel, evolutionarily conserved neurotrophic factor family expressed in vertebrates and invertebrates. The present study investigated the neuroprotective and restorative effects of human CDNF and MANF in rats with unilateral partial lesion of dopamine neurons by 6-hydroxydopamine (6-OHDA) using both behavioral (amphetamine-induced rotation) and immunohistochemical analyses. We also investigated the distribution and transportation profiles of intrastriatally injected CDNF and MANF in rats. Intrastriatal CDNF and MANF protected nigrostriatal dopaminergic neurons when administered six hours before or four weeks after the neurotoxin 6-OHDA. More importantly, the function of the lesioned nigrostriatal dopaminergic system was partially restored even when the neurotrophic factors were administered four weeks after 6-OHDA. A 14-day continuous infusion of CDNF but not of MANF restored the function of the midbrain neural circuits controlling movement when initiated two weeks after unilateral injection of 6-OHDA. Continuous infusion of CDNF also protected dopaminergic TH-positive cell bodies from toxin-induced degeneration in the substantia nigra pars compacta (SNpc) and fibers in the striatum. When injected into the striatum, CDNF and GDNF had similar transportation profiles from the striatum to the SNpc; thus CDNF may act via the same nerve tracts as GDNF. Intrastriatal MANF was transported to cortical areas which may reflect a mechanism of neurorestorative action that is different from that of CDNF and GDNF. CDNF and MANF were also shown to distribute more readily than GDNF. In conclusion, CDNF and MANF are potential therapeutic proteins for the treatment of PD.
Resumo:
Biochemical, histopathological and ultrastructural changes occurring at different time points after intraperitoneal administration of a single dose of pulegone (300 mg/kg) were studied. Significant decreases in the level of liver microsomal cytochrome P-450 (67%), heme (37%), aminopyrine N-demethylase (60%) and glucose-6-phosphatase (58%), were noticed 24 hr after pulegone treatment. Alanine amino transferase (ALT) levels increased in a time dependent manner, following exposure of rats to pulegone. Light microscopic studies of liver tissues showed dilation of central veins and distention of sinusoidal spaces 6 hr after pulegone treatment. Initial centrilobular necrosis was noticed at 12 hr. Centrilobular necrosis became severe at 18 hr and nuclear changes included karyorrhexis and karyolysis. Midzonal and periportal degenerative changes in addition to centrilobular necrosis was observed 24 hr after pulegone administration. Electron microscopic changes showed severe degeneration of endoplasmic reticulum, swelling of mitochondria and nuclear changes, 24 hr after administration of pulegone. The time course profile of the hepatocytes after treatment with pulegone indicates that endoplasmic reticulum is the organelle most affected, following which other degenerative changes occur ultimately leading to cell death.
Resumo:
Parkinson´s disease (PD) is a debilitating age-related neurological disorder that affects various motor skills and can lead to a loss of cognitive functions. The motor symptoms are the result of the progressive degeneration of dopaminergic neurons within the substantia nigra. The factors that influence the pathogenesis and the progression of the neurodegeneration remain mostly unclear. This study investigated the role of various programmed cell death (PCD) pathways, oxidative stress, and glial cells both in dopaminergic neurodegeneration and in the protective action of various drugs. To this end, we exposed dopaminergic neuroblastoma cells (SH-SY5Y cells) to 6-OHDA, which produces oxidative stress and activates various PCD modalities that result in neuronal degeneration. Additionally, to explore the role of glia, we prepared rat midbrain primary mixed-cell cultures containing both neurons and glial cell types such as microglia and astroglia and then exposed the cultures to either MPP plus or lipopolysaccharide. Our results revealed that 6-OHDA activated several PCD pathways including apoptosis, autophagic stress, lysosomal membrane permeabilization, and perhaps paraptosis in SH-SY5Y cells. Furthermore, we found that minocycline protected SH-SY5Y cells from 6-OHDA by inhibiting both apoptotic and non-apoptotic PCD modalities. We also observed an inconsistent neuroprotective effect of various dietary anti-oxidant compounds against 6-OHDA toxicity in vitro in SH-SY5Y cells. Specifically, quercetin and curcumin exerted neuroprotection only within a narrow concentration range and a limited time frame, whereas resveratrol and epigallocatechin 3-gallate provided no protection whatsoever. Lastly, we found that molecules such as amantadine may delay or even halt the neurodegeneration in primary cell cultures by inhibiting the release of neurotoxic factors from overactivated microglia and by enhancing the pro-survival actions of astroglia. Together these data suggest that the strategy of dampening oxidative species with anti-oxidants is less effective than preventing the production of toxic factors such as oxidative and pro-inflammatory molecules by pathologically activated microglia. This would subsequently prevent the activation of various PCD modalities that cause neuronal degeneration.
Resumo:
Hantaviruses (family Bunyaviridae, genus Hantavirus) are enveloped viruses incorporating a segmented, negative-sense RNA genome. Each hantavirus is carried by its specific host, either a rodent or an insectivore (shrew), in which the infection is asymptomatic and persistent. In humans, hantaviruses cause Hemorrhagic fever with renal syndrome (HFRS) in Eurasia and Hantavirus cardiopulmonary syndrome (HCPS) in the Americas. In Finland, Puumala virus (genus Hantavirus) is the causative agent of NE, a mild form of HFRS. The HFRS-type diseases are often associated with renal failure and proteinuria that might be mechanistically explained by infected kidney tubular cell degeneration in patients. Previously, it has been shown that non-pathogenic hantavirus, Tula virus (TULV), could cause programmed cell death, apoptosis, in cell cultures. This suggested that the infected kidney tubular degeneration could be caused directly by virus replication. In the first paper of this thesis the molecular mechanisms involved in TULV-induced apoptosis was further elucidated. A virus replication-dependent down-regulation of ERK1/2, concomitantly with the induced apoptosis, was identified. In addition, this phenomenon was not restricted to TULV or to non-pathogenic hantaviruses in general since also a pathogenic hantavirus, Seoul virus, could inhibit ERK1/2 activity. Hantaviruses consist of membrane-spanning glycoproteins Gn and Gc, RNA-dependent RNA polymerase (L protein) and nucleocapsid protein N, which encapsidates the viral genome, and thus forms the ribonucleoprotein (RNP). Interaction between the cytoplasmic tails of viral glycoproteins and RNP is assumed to be the only means how viral genetic material is incorporated into infectious virions. In the second paper of this thesis, it was shown by immunoprecipitation that viral glycoproteins and RNP interact in the purified virions. It was further shown that peptides derived from the cytoplasmic tails (CTs) of both Gn and Gc could bind RNP and recombinant N protein. In the fourth paper the cytoplamic tail of Gn but not Gc was shown to interact with genomic RNA. This interaction was probably rather unspecific since binding of Gn-CT with unrelated RNA and even single-stranded DNA were also observed. However, since the RNP consists of both N protein and N protein-encapsidated genomic RNA, it is possible that the viral genome plays a role in packaging of RNPs into virions. On the other hand, the nucleic acid-binding activity of Gn may have importance in the synthesis of viral RNA. Binding sites of Gn-CT with N protein or nucleic acids were also determined by peptide arrays, and they were largely found to overlap. The Gn-CT of hantaviruses contain a conserved zinc finger (ZF) domain with an unknown function. Some viruses need ZFs in entry or post-entry steps of the viral life cycle. Cysteine residues are required for the folding of ZFs by coordinating zinc-ions, and alkylation of these residues can affect virus infectivity. In the third paper, it was shown that purified hantavirions could be inactivated by treatment with cysteine-alkylating reagents, especially N-ethyl maleimide. However, the effect could not be pin-pointed to the ZF of Gn-CT since also other viral proteins reacted with maleimides, and it was, therefore, impossible to exclude the possibility that other cysteines besides those that were essential in the formation of ZF are required for hantavirus infectivity.
Resumo:
Embryonic midbrain and hindbrain are structures which will give rise to brain stem and cerebellum in the adult vertebrates. Brain stem contains several nuclei which are essential for the regulation of movements and behavior. They include serotonin-producing neurons, which develop in the hindbrain, and dopamine-producing neurons in the ventral midbrain. Degeneration and malfunction of these neurons leads to various neurological disorders, including schizophrenia, depression, Alzheimer s, and Parkinson s disease. Thus, understanding their development is of high interest. During embryogenesis, a local signaling center called isthmic organizer regulates the development of midbrain and anterior hindbrain. It secretes peptides belonging to fibroblast growth factor (FGF) and Wingless/Int (Wnt) families. These factors bind to their receptors in the surrounding tissues, and activate various downstream signaling pathways which lead to alterations in gene expression. This in turn affects the various developmental processes in this region, such as proliferation, survival, patterning, and neuronal differentiation. In this study we have analyzed the role of FGFs in the development of midbrain and anterior hindbrain, by using mouse as a model organism. We show that FGF receptors cooperate to receive isthmic signals, and cell-autonomously promote cell survival, proliferation, and maintenance of neuronal progenitors. FGF signaling is required for the maintenance of Sox3 and Hes1 expression in progenitors, and Hes1 in turn suppresses the activity of proneural genes. Loss of Hes1 is correlated with increased cell cycle exit and premature neuronal differentiation. We further demonstrate that FGF8 protein forms an antero-posterior gradient in the basal lamina, and might enter the neuronal progenitors via their basal processes. We also analyze the impact of FGF signaling on the various neuronal nuclei in midbrain and hindbrain. Rostral serotonergic neurons appear to require high levels of FGF signaling in order to develop. In the absence of FGF signaling, these neurons are absent. We also show that embryonic meso-diencephalic dopaminergic domain consists of two populations in the anterior-posterior direction, and that these populations display different molecular profiles. The anterior diencephalic domain appears less dependent on isthmic FGFs, and lack several genes typical of midbrain dopaminergic neurons, such as Pitx3 and DAT. In Fgfr compound mutants, midbrain dopaminergic neurons begin to develop but soon adopt characteristics which highly resemble those of diencephalic dopaminergic precursors. Our results indicate that FGF signaling regulates patterning of these two domains cell-autonomously.
Resumo:
The selective withdrawal of pituitary gonadotropins through specific antibodies is known to cause disruption of spermatogenesis. The cellular mechanism responsible for the degenerative changes under isolated effect of luteinizing hormone (LH) deprivation is not clear. Using antibodies specific to LH we have investigated the effect of immunoneutralization of LH on apoptotic cell death in the testicular cells of the immature and the adult rats. Specific neutralization of LH resulted in apoptotic cell death of germ cells, both in the immature and the adult rats. The germ cells from control animals showed predominantly high molecular weight DNA, while the antiserum treated group showed DNA cleavage into low molecular weight DNA ladder characteristic of apoptosis. This pattern could be observed within 24 h of a/s administration and the effect could be reversed by testosterone. The germ cells were purified by centrifugal elutriation and the vulnerability of germ cell types to undergo apoptosis under LH deprivation was investigated. The round spermatids and the pachytene spermatocytes were found to be the most sensitive germ cells to lack of LH and underwent apoptosis. Interestingly, spermatogonial cells were found to be the least sensitive germ cells to the lack of LH in terms of apoptotic cell death. Results show that LH, in addition to being involved in the germ cell differentiation, is also involved in cell survival and prevent degeneration of germ cells during spermatogenesis. Apoptotic DNA fragmentation may serve as a useful marker for the study of hormonal regulation of spermatogenesis and the specific neutralization of gonadotropic hormones can be a reliable model for the study of the molecular mechanism of apoptosis.
Resumo:
We propose a Low Noise Amplifier (LNA) architecture for power scalable receiver front end (FE) for Zigbee. The motivation for power scalable receiver is to enable minimum power operation while meeting the run-time performance needed. We use simple models to find empirical relations between the available signal and interference levels to come up with required Noise Figure (NF) and 3rd order Intermodulation Product (IIP3) numbers. The architecture has two independent digital knobs to control the NF and IIP3. Acceptable input match while using adaptation has been achieved by using an Active Inductor configuration for the source degeneration inductor of the LNA. The low IF receiver front end (LNA with I and Q mixers) was fabricated in 130nm RFCMOS process and tested.
Resumo:
Impairment of Akt phosphorylation, a critical survival signal, has been implicated in the degeneration of dopaminergic neurons in Parkinson's disease. However, the mechanism underlying pAkt loss is unclear. In the current study, we demonstrate pAkt loss in ventral midbrain of mice treated with dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), when compared to ventral midbrain of control mice treated with vehicle alone. Thiol residues of the critical cysteines in Akt are oxidized to a greater degree in mice treated with MPTP, which is reflected as a 40% loss of reduced Akt. Association of oxidatively modified Akt with the phosphatase PP2A, which can lead to enhanced dephosphorylation of pAkt, was significantly stronger after MPTP treatment. Maintaining the protein thiol homeostasis by thiol antioxidants prevented loss of reduced Akt, decreased association with PP2A, and maintained pAkt levels. Overexpression of glutaredoxin, a protein disulfide oxidoreductase, in human primary neurons helped sustain reduced state of Akt and abolished MPP+-mediated pAkt loss. We demonstrate for the first time the selective loss of Akt activity, in vivo, due to oxidative modification of Akt and provide mechanistic insight into oxidative stress-induced down-regulation of cell survival pathway in mouse midbrain following exposure to MPTP.-Durgadoss, L., Nidadavolu, P., Khader Valli, R., Saeed, U., Mishra, M., Seth, P., Ravindranath, R. Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt. FASEB J. 26, 1473-1483 (2012). www.fasebj.org