987 resultados para Forest plants
Resumo:
The highly purified enzyme from mung bean seedlings hydrolyzing FAD at pH 9.4 and temperature 49 °, functioned with an initial fast rate followed by a second slower rate. The activity was linear with enzyme concentration over a small range of concentration and was dependent on the time of incubation. Inhibition of enzyme activity with increasing concentrations of AMP was sigmoid;concentrations less than 1 × 10−6 M were without effect, concentrations between 1 × 10−6 and 8 × 10−5 M inhibited by 20% and concentrations beyond 8 × 10−5 Image caused progressive inhibition. Concentrations beyond 1 × 10−3 Image inhibited the activity completely. Preincubation of the enzyme with PCMB or NEM, or aging, or reversible denaturation with urea abolished the inhibitory effect of AMP at concentrations lower than 8 × 10−6 Image . The aged enzyme could be reactivated by ADP.
Resumo:
Regeneration ecology, diversity of native woody species and its potential for landscape restoration was studied in the remnant natural forest at the College of Forestry and Natural Resources at Wondo Genet, Ethiopia. The type of forest is Afromontane rainforest , with many valuable tree species like Aningeria adolfi-friederici, and it is an important provider of ecological, social and economical services for the population that lives in this area. The study contains two parts, natural regeneration studies (at the natural forest) and interviews with farmers in the nearby village of the remnant patch. The objective of the first part was to investigate the floristic composition, densitiy and regeneration profiles of native woody species in the forest, paying special attention to woody species that are considered the most relevant (socio-economic). The second part provided information on woody species preferred by the farmers and on multiple uses of the adjacent natural forest, it also provided information and analysed perceptions on forest degradation. Systematic plot sampling was used in the forest inventory. Twenty square plots of 20 x 20 m were assessed, with 38 identified woody species (the total number of species was 45), representing 26 families. Of these species 61% were trees, 13% shrubs, 11% lianas and 16% species that could have both life forms. An analysis of natural regeneration of five important tree species in the natural forest showed that Aningeria adolfi-friederici had the best regeneration results. An analysis of population structure (as determined by height classes) of two commercially important woody species in the forest, Aningeria adolfi-friederici and Podocarpus falcatus, showed a marked difference: Aningeria had a typical “reversed J” frequency distribution, while Podocarpus showed very low values in all height classes. Multi dimensional scaling (MDS) was used to map the sample plots according to their similarity in species composition, using the Sørensen quantitative index, coupled with indicator species analysis .Three groups were identified with respective indicator species: Group 1 – Adhatoda schimperiana, Group 2 – Olea hochstetteri , Group 3 – Acacia senegal and Aningeria adolfi-friederici. Thirty questionnaire interviews were conducted with farmers in the village of Gotu Onoma that use the nearby remant forest patch. Their tree preferences were exotic species such as Eucalyptus globulus for construction and fuelwood and Grevillea robusta for shade and fertility. Considering forest land degradation farmers were aware of the problem and suggested that the governmental institutions address the problem by planting more Eucalyptus globulus. The natural forest seemed to have moderate levels of disturbance and it was still floristically diverse. However, the low rate of natural regeneration of Podocarpus falcatus suggested that this species is threatened and must be a priority in conservation actions. Plantations and agroforestry seem to be possible solutions for rehabilitation of the surrounding degraded lands, thereby decreasing the existent pressure in the remnant natural forest.
Resumo:
There is considerable evidence that children in modern society are losing
their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire
comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research
further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.
Resumo:
Species specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm’ region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Resumo:
There is considerable evidence that children in modern society are losing
their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire
comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research
further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.
Resumo:
The occurrence of an enzyme hydrolyzing flavine adenine dinucleotide (FAD) was demonstrated in a number of seed extracts. The enzyme from Phaseolus radiatus was purified 104-fold by fractionation with ammonium sulfate and ethanol and by negative adsorption on alumina Cγ gel. The enzyme cleaves the POP bond of FAD to yield flavine mononucleotide and adenosine monophosphate. When reduced glutathione is added to the enzyme, it cleaves FAD at the COP bond to yield riboflavine, adenosine, and pyrophosphate, Both the activities are optimal at a pH of 7.2 and at a temperature of 37 . The Km for both the activities is 1.65 × 10−5 M. The stoichiometry and the identity of the products of both the treated and untreated enzyme were established. The untreated enzyme was not inhibited by pCMB or arsenite, but the treated enzyme was sensitive to both these inhibitors. The inhibition by pCMB could be reversed by monothiols and the inhibition by arsenite by dithiols.
Resumo:
1. 1. An enzyme catalysing the conversion of α,β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate to α-ketoisovalerate and α-keto-β-methylvalerate has been partially purified from green gram (Phaseolus radiatus), and its characteristics studied. 2. 2. A natural inhibitor, heat stable and inorganic in nature, was observed in the crude extracts. 3. 3. The observed Km values for α-β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate were 2.4 · 10-3 M and 9 · 10-4 M, respectively. 4. 4. The enzyme required the presence of a divalent metal ion (Mg2+, Mn2+ or Fe2+) for maximal activity. Heavy metals like Ag+ and Hg2+ were inhibitory. 5. 5. The optimal activity was around pH 8.0 and the optimum temperature at 52°. The activation energy is found to be 12 600 cal/mole. 6. 6. The enzyme was inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and sulphydryl compounds like cysteine, glutathione, 2-mercaptoethanol and 2,3-dimercaptopropanol. The inhibition by p-hydroxymercuribenzoate could not be reversed by any of the sulfhydryl compounds tested.
Resumo:
Species specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm’ region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Resumo:
There is considerable evidence that children in modern society are losing
their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire
comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research
further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.
Resumo:
Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.
Resumo:
The enzymic hydrolysis of riboflavin to lumichrome and ribitol by extracts of Crinum longifolium bulbs has been demonstrated. The enzyme was purified 48-fold by ZnSO4 treatment and ethanol fractionation, and concentrated by using Sephadex G-25. After establishing the stoichiometry of the reaction, the general properties of the purified enzyme were studied. The enzyme showed maximal activity at pH 7·5, and it had a requirement for reduced glutathione which could be replaced by cysteine or ascorbic acid. Mg2+ and Li+ activated the enzyme. The reaction was highly specific to riboflavin and was competitively inhibited by riboflavin 5′-phosphate.
Biosynthesis of valine and isoleucine in plants I. Formation of α-acetolactate in Phaseolus radiatus
Resumo:
1. 1. The presence of an enzyme system in plants catalyzing the formation of α-acetolactate from pyruvate has been demonstrated; the system in green gram (Phaseolus radiatus) has been partially purified and its characteristics have been studied.2. Free acetaldehyde is formed as a product of the reaction and so the reaction is mainly diverted towards the formation of acetoin. 3. The system requires thiamine pyrophosphate and a divalent metal ion (Mn2+ or Mg2+) for maximum activity. The optimum pH is around 6.0 and the optimum temperature is 60°. 4. The system is very labile in absence of pyruvate, Mn2+ and DPT. 5. The Km values for pyruvate, Mn2+, Mg2+ and DPT are 3·10−2 M. 5·10−5 M, 2·10−5 M, and e·10−6 M respectively. The activation energy is 3540 cal/mole. 6. The enzyme is strongly inhibited by p-chloromercuribenzoate and the inhibition can be reversed partially by 2-mercaptoethanol, BAL or cysteine. Heavy metals, such as Hg2+ and Ag+, are inhibitory but l-valine does not inhibit the reaction.