871 resultados para Forecasting, teleriscaldamento, metodi previsionali, Weka
Resumo:
Climate change is expected to profoundly influence the hydrosphere of mountain ecosystems. The focus of current process-based research is centered on the reaction of glaciers and runoff to climate change; spatially explicit impacts on soil moisture remain widely neglected. We spatio-temporally analyzed the impact of the climate on soil moisture in a mesoscale high mountain catchment to facilitate the development of mitigation and adaptation strategies at the level of vegetation patterns. Two regional climate models were downscaled using three different approaches (statistical downscaling, delta change, and direct use) to drive a hydrological model (WaSiM-ETH) for reference and scenario period (1960–1990 and 2070–2100), resulting in an ensemble forecast of six members. For all ensembles members we found large changes in temperature, resulting in decreasing snow and ice storage and earlier runoff, but only small changes in evapotranspiration. The occurrence of downscaled dry spells was found to fluctuate greatly, causing soil moisture depletion and drought stress potential to show high variability in both space and time. In general, the choice of the downscaling approach had a stronger influence on the results than the applied regional climate model. All of the results indicate that summer soil moisture decreases, which leads to more frequent declines below a critical soil moisture level and an advanced evapotranspiration deficit. Forests up to an elevation of 1800 m a.s.l. are likely to be threatened the most, while alpine areas and most pastures remain nearly unaffected. Nevertheless, the ensemble variability was found to be extremely high and should be interpreted as a bandwidth of possible future drought stress situations.
Resumo:
Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.
Resumo:
This study examines how different microphysical parameterization schemes influence orographically induced precipitation and the distributions of hydrometeors and water vapour for midlatitude summer conditions in the Weather Research and Forecasting (WRF) model. A high-resolution two-dimensional idealized simulation is used to assess the differences between the schemes in which a moist air flow is interacting with a bell-shaped 2 km high mountain. Periodic lateral boundary conditions are chosen to recirculate atmospheric water in the domain. It is found that the 13 selected microphysical schemes conserve the water in the model domain. The gain or loss of water is less than 0.81% over a simulation time interval of 61 days. The differences of the microphysical schemes in terms of the distributions of water vapour, hydrometeors and accumulated precipitation are presented and discussed. The Kessler scheme, the only scheme without ice-phase processes, shows final values of cloud liquid water 14 times greater than the other schemes. The differences among the other schemes are not as extreme, but still they differ up to 79% in water vapour, up to 10 times in hydrometeors and up to 64% in accumulated precipitation at the end of the simulation. The microphysical schemes also differ in the surface evaporation rate. The WRF single-moment 3-class scheme has the highest surface evaporation rate compensated by the highest precipitation rate. The different distributions of hydrometeors and water vapour of the microphysical schemes induce differences up to 49 W m−2 in the downwelling shortwave radiation and up to 33 W m−2 in the downwelling longwave radiation.
Resumo:
In this paper, we describe NewsCATS (news categorization and trading system), a system implemented to predict stock price trends for the time immediately after the publication of press releases. NewsCATS consists mainly of three components. The first component retrieves relevant information from press releases through the application of text preprocessing techniques. The second component sorts the press releases into predefined categories. Finally, appropriate trading strategies are derived by the third component by means of the earlier categorization. The findings indicate that a categorization of press releases is able to provide additional information that can be used to forecast stock price trends, but that an adequate trading strategy is essential for the results of the categorization to be fully exploited.
Resumo:
The application of Markov processes is very useful to health-care problems. The objective of this study is to provide a structured methodology of forecasting cost based upon combining a stochastic model of utilization (Markov Chain) and deterministic cost function. The perspective of the cost in this study is the reimbursement for the services rendered. The data to be used is the OneCare database of claim records of their enrollees over a two-year period of January 1, 1996–December 31, 1997. The model combines a Markov Chain that describes the utilization pattern and its variability where the use of resources by risk groups (age, gender, and diagnosis) will be considered in the process and a cost function determined from a fixed schedule based on real costs or charges for those in the OneCare claims database. The cost function is a secondary application to the model. Goodness-of-fit will be used checked for the model against the traditional method of cost forecasting. ^
Resumo:
We examine the time-series relationship between housing prices in Los Angeles, Las Vegas, and Phoenix. First, temporal Granger causality tests reveal that Los Angeles housing prices cause housing prices in Las Vegas (directly) and Phoenix (indirectly). In addition, Las Vegas housing prices cause housing prices in Phoenix. Los Angeles housing prices prove exogenous in a temporal sense and Phoenix housing prices do not cause prices in the other two markets. Second, we calculate out-of-sample forecasts in each market, using various vector autoregessive (VAR) and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of these models with various priors. Different specifications provide superior forecasts in the different cities. Finally, we consider the ability of theses time-series models to provide accurate out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts of turning points.
Resumo:
We develop coincident and leading employment indexes for the Connecticut economy. Four employment-related variables enter the coincident index while five employment-related variables enter the leading index. The peaks and troughs in the leading index lead the peaks and troughs in the coincident index by an average of 3 and 9 months. Finally, we use the leading index in vector-autoregressive (VAR) and Bayesian vector-autoregressive (BVAR) models to forecast the coincident index, nonfarm employment, and the unemployment rate.
Resumo:
This study demonstrated that accurate, short-term forecasts of Veterans Affairs (VA) hospital utilization can be made using the Patient Treatment File (PTF), the inpatient discharge database of the VA. Accurate, short-term forecasts of two years or less can reduce required inventory levels, improve allocation of resources, and are essential for better financial management. These are all necessary achievements in an era of cost-containment.^ Six years of non-psychiatric discharge records were extracted from the PTF and used to calculate four indicators of VA hospital utilization: average length of stay, discharge rate, multi-stay rate (a measure of readmissions) and days of care provided. National and regional levels of these indicators were described and compared for fiscal year 1984 (FY84) to FY89 inclusive.^ Using the observed levels of utilization for the 48 months between FY84 and FY87, five techniques were used to forecast monthly levels of utilization for FY88 and FY89. Forecasts were compared to the observed levels of utilization for these years. Monthly forecasts were also produced for FY90 and FY91.^ Forecasts for days of care provided were not produced. Current inpatients with very long lengths of stay contribute a substantial amount of this indicator and it cannot be accurately calculated.^ During the six year period between FY84 and FY89, average length of stay declined substantially, nationally and regionally. The discharge rate was relatively stable, while the multi-stay rate increased slightly during this period. FY90 and FY91 forecasts show a continued decline in the average length of stay, while the discharge rate is forecast to decline slightly and the multi-stay rate is forecast to increase very slightly.^ Over a 24 month ahead period, all three indicators were forecast within a 10 percent average monthly error. The 12-month ahead forecast errors were slightly lower. Average length of stay was less easily forecast, while the multi-stay rate was the easiest indicator to forecast.^ No single technique performed significantly better as determined by the Mean Absolute Percent Error, a standard measure of error. However, Autoregressive Integrated Moving Average (ARIMA) models performed well overall and are recommended for short-term forecasting of VA hospital utilization. ^
Resumo:
A commentary on Santos' article, "Explaining Scholarship Addressing Hispanic Children’s Issues."