928 resultados para Flood forecasting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office’s (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. Method The prototype health forecasting alert system introduces an “impact vs likelihood matrix” for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. Conclusions The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual losses of cocoa in Ghana to mirids are significant. Therefore, accurate timing of insecticide application is critical to enhance yields. However, cocoa farmers often lack information on the expected mirid population for each season to enable them to optimise pesticide use. This study assessed farmers’ knowledge and perceptions of mirid control and their willingness to use forecasting systems informing them of expected mirid peaks and time of application of pesticides. A total of 280 farmers were interviewed in the Eastern and Ashanti regions of Ghana with a structured open and closed ended questionnaire. Most farmers (87%) considered mirids as the most important insect pest on cocoa with 47% of them attributing 30-40% annual crop loss to mirid damage. There was wide variation in the timing of insecticide application as a result of farmers using different sources of information to guide the start of application. The majority of farmers (56%) do not have access to information on the type, frequency and timing of insecticides to use. However, respondents who are members of farmer groups had better access to such information. Extension officers were the preferred channel for information transfer to farmers with 72% of farmers preferring them to other available methods of communication. Almost all the respondents (99%) saw the need for a comprehensive forecasting system to help farmers manage cocoa mirids. The importance of accurate timing for mirid control based on forecasted information to farmer groups and extension officers was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ability to quantify the reliability of probabilistic flood inundation predictions is a requirement not only for guiding model development but also for their successful application. Probabilistic flood inundation predictions are usually produced by choosing a method of weighting the model parameter space, but previous study suggests that this choice leads to clear differences in inundation probabilities. This study aims to address the evaluation of the reliability of these probabilistic predictions. However, a lack of an adequate number of observations of flood inundation for a catchment limits the application of conventional methods of evaluating predictive reliability. Consequently, attempts have been made to assess the reliability of probabilistic predictions using multiple observations from a single flood event. Here, a LISFLOOD-FP hydraulic model of an extreme (>1 in 1000 years) flood event in Cockermouth, UK, is constructed and calibrated using multiple performance measures from both peak flood wrack mark data and aerial photography captured post-peak. These measures are used in weighting the parameter space to produce multiple probabilistic predictions for the event. Two methods of assessing the reliability of these probabilistic predictions using limited observations are utilized; an existing method assessing the binary pattern of flooding, and a method developed in this paper to assess predictions of water surface elevation. This study finds that the water surface elevation method has both a better diagnostic and discriminatory ability, but this result is likely to be sensitive to the unknown uncertainties in the upstream boundary condition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topography of many floodplains in the developed world has now been surveyed with high resolution sensors such as airborne LiDAR (Light Detection and Ranging), giving accurate Digital Elevation Models (DEMs) that facilitate accurate flood inundation modelling. This is not always the case for remote rivers in developing countries. However, the accuracy of DEMs produced for modelling studies on such rivers should be enhanced in the near future by the high resolution TanDEM-X WorldDEM. In a parallel development, increasing use is now being made of flood extents derived from high resolution Synthetic Aperture Radar (SAR) images for calibrating, validating and assimilating observations into flood inundation models in order to improve these. This paper discusses an additional use of SAR flood extents, namely to improve the accuracy of the TanDEM-X DEM in the floodplain covered by the flood extents, thereby permanently improving this DEM for future flood modelling and other studies. The method is based on the fact that for larger rivers the water elevation generally changes only slowly along a reach, so that the boundary of the flood extent (the waterline) can be regarded locally as a quasi-contour. As a result, heights of adjacent pixels along a small section of waterline can be regarded as samples with a common population mean. The height of the central pixel in the section can be replaced with the average of these heights, leading to a more accurate estimate. While this will result in a reduction in the height errors along a waterline, the waterline is a linear feature in a two-dimensional space. However, improvements to the DEM heights between adjacent pairs of waterlines can also be made, because DEM heights enclosed by the higher waterline of a pair must be at least no higher than the corrected heights along the higher waterline, whereas DEM heights not enclosed by the lower waterline must in general be no lower than the corrected heights along the lower waterline. In addition, DEM heights between the higher and lower waterlines can also be assigned smaller errors because of the reduced errors on the corrected waterline heights. The method was tested on a section of the TanDEM-X Intermediate DEM (IDEM) covering an 11km reach of the Warwickshire Avon, England. Flood extents from four COSMO-SKyMed images were available at various stages of a flood in November 2012, and a LiDAR DEM was available for validation. In the area covered by the flood extents, the original IDEM heights had a mean difference from the corresponding LiDAR heights of 0.5 m with a standard deviation of 2.0 m, while the corrected heights had a mean difference of 0.3 m with standard deviation 1.2 m. These figures show that significant reductions in IDEM height bias and error can be made using the method, with the corrected error being only 60% of the original. Even if only a single SAR image obtained near the peak of the flood was used, the corrected error was only 66% of the original. The method should also be capable of improving the final TanDEM-X DEM and other DEMs, and may also be of use with data from the SWOT (Surface Water and Ocean Topography) satellite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we assess opinion polls, prediction markets, expert opinion and statistical modelling over a large number of US elections in order to determine which perform better in terms of forecasting outcomes. In line with existing literature, we bias-correct opinion polls. We consider accuracy, bias and precision over different time horizons before an election, and we conclude that prediction markets appear to provide the most precise forecasts and are similar in terms of bias to opinion polls. We find that our statistical model struggles to provide competitive forecasts, while expert opinion appears to be of value. Finally we note that the forecast horizon matters; whereas prediction market forecasts tend to improve the nearer an election is, opinion polls appear to perform worse, while expert opinion performs consistently throughout. We thus contribute to the growing literature comparing election forecasts of polls and prediction markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological forecasting is difficult but essential, because reactive management results in corrective actions that are often too late to avert significant environmental damage. Here, we appraise different forecasting methods with a particular focus on the modelling of species populations. We show how simple extrapolation of current trends in state is often inadequate because environmental drivers change in intensity over time and new drivers emerge. However, statistical models, incorporating relationships with drivers, simply offset the prediction problem, requiring us to forecast how the drivers will themselves change over time. Some authors approach this problem by focusing in detail on a single driver, whilst others use ‘storyline’ scenarios, which consider projected changes in a wide range of different drivers. We explain why both approaches are problematic and identify a compromise to model key drivers and interactions along with possible response options to help inform environmental management. We also highlight the crucial role of validation of forecasts using independent data. Although these issues are relevant for all types of ecological forecasting, we provide examples based on forecasts for populations of UK butterflies. We show how a high goodness-of-fit for models used to calibrate data is not sufficient for good forecasting. Long-term biological recording schemes rather than experiments will often provide data for ecological forecasting and validation because these schemes allow capture of landscape-scale land-use effects and their interactions with other drivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are a number of factors that lead to non-linearity between precipitation anomalies and flood hazard; this non-linearity is a pertinent issue for applications that use a precipitation forecast as a proxy for imminent flood hazard. We assessed the degree of this non-linearity for the first time using a recently developed global-scale hydrological model driven by the ERA-Interim Land precipitation reanalysis (1980–2010). We introduced new indices to assess large-scale flood hazard, or floodiness, and quantified the link between monthly precipitation, river discharge and floodiness anomalies at the global and regional scales. The results show that monthly floodiness is not well correlated with precipitation, therefore demonstrating the value of hydrometeorological systems for providing floodiness forecasts for decision-makers. A method is described for forecasting floodiness using the Global Flood Awareness System, building a climatology of regional floodiness from which to forecast floodiness anomalies out to two weeks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper characterizes the dynamics of jumps and analyzes their importance for volatility forecasting. Using high-frequency data on four prominent energy markets, we perform a model-free decomposition of realized variance into its continuous and discontinuous components. We find strong evidence of jumps in energy markets between 2007 and 2012. We then investigate the importance of jumps for volatility forecasting. To this end, we estimate and analyze the predictive ability of several Heterogenous Autoregressive (HAR) models that explicitly capture the dynamics of jumps. Conducting extensive in-sample and out-of-sample analyses, we establish that explicitly modeling jumps does not significantly improve forecast accuracy. Our results are broadly consistent across our four energy markets, forecasting horizons, and loss functions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates flash flood forecast and warning communication, interpretation, and decision making, using data from a survey of 418 members of the public in Boulder, Colorado, USA. Respondents to the public survey varied in their perceptions and understandings of flash flood risks in Boulder, and some had misconceptions about flash flood risks, such as the safety of crossing fast-flowing water. About 6% of respondents indicated consistent reversals of US watch-warning alert terminology. However, more in-depth analysis illustrates the multi-dimensional, situationally dependent meanings of flash flood alerts, as well as the importance of evaluating interpretation and use of warning information along with alert terminology. Some public respondents estimated low likelihoods of flash flooding given a flash flood warning; these were associated with lower anticipated likelihood of taking protective action given a warning. Protective action intentions were also lower among respondents who had less trust in flash flood warnings, those who had not made prior preparations for flash flooding, and those who believed themselves to be safer from flash flooding. Additional analysis, using open-ended survey questions about responses to warnings, elucidates the complex, contextual nature of protective decision making during flash flood threats. These findings suggest that warnings can play an important role not only by notifying people that there is a threat and helping motivate people to take protective action, but also by helping people evaluate what actions to take given their situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TIGGE was a major component of the THORPEX (The Observing System Research and Predictability Experiment) research program, whose aim is to accelerate improvements in forecasting high-impact weather. By providing ensemble prediction data from leading operational forecast centers, TIGGE has enhanced collaboration between the research and operational meteorological communities and enabled research studies on a wide range of topics. The paper covers the objective evaluation of the TIGGE data. For a range of forecast parameters, it is shown to be beneficial to combine ensembles from several data providers in a Multi-model Grand Ensemble. Alternative methods to correct systematic errors, including the use of reforecast data, are also discussed. TIGGE data have been used for a range of research studies on predictability and dynamical processes. Tropical cyclones are the most destructive weather systems in the world, and are a focus of multi-model ensemble research. Their extra-tropical transition also has a major impact on skill of mid-latitude forecasts. We also review how TIGGE has added to our understanding of the dynamics of extra-tropical cyclones and storm tracks. Although TIGGE is a research project, it has proved invaluable for the development of products for future operational forecasting. Examples include the forecasting of tropical cyclone tracks, heavy rainfall, strong winds, and flood prediction through coupling hydrological models to ensembles. Finally the paper considers the legacy of TIGGE. We discuss the priorities and key issues in predictability and ensemble forecasting, including the new opportunities of convective-scale ensembles, links with ensemble data assimilation methods, and extension of the range of useful forecast skill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the eruption of Eyjafjallajökull in April and May 2010, the London Volcanic Ash  Advisory Centre demonstrated the importance of infrared (IR) satellite imagery for monitoring volcanic ash and validating the Met Office operational model, NAME. This model is used to forecast ash dispersion and forms much of the basis of the advice given to civil aviation. NAME requires a source term describing the properties of the eruption plume at the volcanic source. Elements of the source term are often highly uncertain and significant effort has therefore been invested into the use of satellite observations of ash clouds to constrain them. This paper presents a data insertion method, where satellite observations of downwind ash clouds are used to create effective ‘virtual sources’ far from the vent. Uncertainty in the model output is known to increase over the duration of a model run, as inaccuracies in the source term, meteorological data and the parameterizations of the   modelled processes accumulate. This new technique, where the dispersion model (DM) is ‘reinitialized’ part-­way through a run, could go some way to addressing this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy precipitation affected Central Europe in May/June 2013, triggering damaging floods both on the Danube and the Elbe rivers. Based on a modelling approach with COSMO-CLM, moisture fluxes, backward trajectories, cyclone tracks and precipitation fields are evaluated for the relevant time period 30 May–2 June 2013. We identify potential moisture sources and quantify their contribution to the flood event focusing on the Danube basin through sensitivity experiments: Control simulations are performed with undisturbed ERA-Interim boundary conditions, while multiple sensitivity experiments are driven with modified evaporation characteristics over selected marine and land areas. Two relevant cyclones are identified both in reanalysis and in our simulations, which moved counter-clockwise in a retrograde path from Southeastern Europe over Eastern Europe towards the northern slopes of the Alps. The control simulations represent the synoptic evolution of the event reasonably well. The evolution of the precipitation event in the control simulations shows some differences in terms of its spatial and temporal characteristics compared to observations. The main precipitation event can be separated into two phases concerning the moisture sources. Our modelling results provide evidence that the two main sources contributing to the event were the continental evapotranspiration (moisture recycling; both phases) and the North Atlantic Ocean (first phase only). The Mediterranean Sea played only a minor role as a moisture source. This study confirms the importance of continental moisture recycling for heavy precipitation events over Central Europe during the summer half year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 23 November 1981, a strong cold front swept across the U.K., producing tornadoes from the west to the east coasts. An extensive campaign to collect tornado reports by the Tornado and Storm Research Organisation (TORRO) resulted in 104 reports, the largest U.K. outbreak. The front was simulated with a convection-permitting numerical model down to 200-m horizontal grid spacing to better understand its evolution and meteorological environment. The event was typical of tornadoes in the U.K., with convective available potential energy (CAPE) less than 150 J kg-1, 0-1-km wind shear of 10-20 m s-1, and a narrow cold-frontal rainband forming precipitation cores and gaps. A line of cyclonic absolute vorticity existed along the front, with maxima as large as 0.04 s-1. Some hook-shaped misovortices bore kinematic similarity to supercells. The narrow swath along which the line was tornadic was bounded on the equatorward side by weak vorticity along the line and on the poleward side by zero CAPE, enclosing a region where the environment was otherwise favorable for tornadogenesis. To determine if the 104 tornado reports were plausible, first possible duplicate reports were eliminated, resulting in as few as 58 tornadoes to as many as 90. Second, the number of possible parent misovortices that may have spawned tornadoes is estimated from model output. The number of plausible tornado reports in the 200-m grid-spacing domain was 22 and as many as 44, whereas the model simulation was used to estimate 30 possible parent misovortices within this domain. These results suggest that 90 reports was plausible.