998 resultados para Finite Chian Rings
Resumo:
The Reynolds-averaged Navier-Stokes equations for describing the turbulent flow in a straight square duct are formulated with two different turbulence models. The governing equations are then expanded as a multi-deck structure in a plane perpendicular to the streamwise direction, with each deck characterized by its dominant physical forces as commonly carried out in analytical work using triple-deck expansion. The resulting equations are numerically integrated using higher polynomial (H-P) finite element technique for each cross-sectional plane to be followed by finite difference representation in the streamwise direction until a fully developed state is reached. The computed results using the two different turbulence models show fair agreement with each other, and concur with the vast body of available experimental data. There is also general agreement between our results and the recent numerical works anisotropic k-epsilon turbulence model.
Resumo:
A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.
Resumo:
Perturbations are applied to the convective coefficients and source term of a convection-diffusion equation so that second-order corrections may be applied to a second-order exponential scheme. The basic Structure of the equations in the resulting fourth-order scheme is identical to that for the second order. Furthermore, the calculations are quite simple as the second-order corrections may be obtained in a single pass using a second-order scheme. For one to three dimensions, the fourth-order exponential scheme is unconditionally stable. As examples, the method is applied to Burgers' and other fluid mechanics problems. Compared with schemes normally used, the accuracies are found to be good and the method is applicable to regions with large gradients.
Resumo:
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
Resumo:
Based on the local properties of a singular field, the displacement pattern of an isoparametric element is improved and a new formulated method of a quasi-compatible finite element is proposed in this paper. This method can be used to solve various engineering problems containing singular distribution, especially, the singular field existing at the tip of cracks. The singular quasi-compatible element (SQCE) is constructed. The characteristics of the elements are analysed from various angles and many examples of calculations are performed. The results show that this method has many significant advantages, by which, the numerical analysis of brittle fracture problems can be solved.
Resumo:
The effect of the particle cover over the density interface between two layers of fluids and of the suspended solid particles in the upper turbulcnt layer on the turbulent entrainment has been studied experimentally. The entrainment distance D is a function of the time of power: D=kt, where =0.200-0.130p. For suspended particles in the upper layer and pure 2-layer fluid is equal to 0.200, but the value of k for the suspended particles is smaller than that for the pure 2-layer fluid. The non-dimensional entrainment velocity is E=KRiln, where n=1.50+0.93 p. It is shown that the particle cover over the interface changes the power of Ril in the entrainment and hinders the turbulent entrainment. The variation rule of E for the suspended particles is the same as that for the pure 2-layer fluid, but the K value of the former is smaller than that of the latter. The turbulent mixing mechanism has been discussed.
Resumo:
piston
Resumo:
Stress and strain distributions and crack opening displacement characteristics of short cracks have been studied in single edge notch bend and centre cracked panel specimens using elastic–plastic finite element analyses incorporating both a non strain hardening and a power law hardening behaviour. J contour integral solutions to describe stress strain conditions at crack tips for short cracks differ from those for long cracks. The analyses show that (i) short cracks can propagate at stress levels lower than those required for long cracks and (ii) a two-parameter description of crack tip fields is necessary for crack propagation.