982 resultados para Filamentous organisms
Resumo:
The electrochemical degradation of different glyphosate herbicide formulations on RuO(2) and IrO(2) DSA(A (R)) electrodes is investigated. Parameters that could influence the formation of organochloride compounds during electrolysis are studied. The effects of chloride concentration, electrodic composition, current density, and electrolysis time are reported. The influence of the oxide composition on herbicide degradation seems to be almost insignificant; however, there is a straight relationship between anode composition and organic halides formation. Commercial herbicide formulations have lower degradation rates and lead to the formation of a larger quantities of organochloride compounds. In high chloride concentrations, there is a significant increase in organic mineralization, and the relationship between chloride concentration and organic halides formation is direct. Only in low chloride medium investigated the organochloride concentration obtained was below the limit values allowed in Brazil. The determination of organic halides absorbable (AOX) during electrolysis increases significantly with the applied current. Even during long-term electrolysis, a large amount of organochloride compounds is formed.
Resumo:
Proteins found in the root exudates are thought to play a role in the interactions between plants and soil organisms. To gain a better understanding of protein secretion by roots, we conducted a systematic proteomic analysis of the root exudates of Arabidopsis thaliana at different plant developmental stages. In total, we identified 111 proteins secreted by roots, the majority of which were exuded constitutively during all stages of development. However, defense-related proteins such as chitinases, glucanases, myrosinases, and others showed enhanced secretion during flowering. Defense-impaired mutants npr1-1 and NahG showed lower levels of secretion of defense proteins at flowering compared with the wild type. The flowering-defective mutants fca-1, stm-4, and co-1 showed almost undetectable levels of defense proteins in their root exudates at similar time points. In contrast, root secretions of defense-enhanced cpr5-2 mutants showed higher levels of defense proteins. The proteomics data were positively correlated with enzymatic activity assays for defense proteins and with in silico gene expression analysis of genes specifically expressed in roots of Arabidopsis. In conclusion, our results show a clear correlation between defense-related proteins secreted by roots and flowering time.
Resumo:
Many peptides containing tryptophan have therapeutic uses and can be studied by their fluorescent properties. The biological activity of these peptides involves interactions with many cellular components and micelles can function as carriers inside organisms. We report results from the interaction of small peptides containing tryptophan with several microheterogeneous systems: sodium dodecyl sulphate (SDS) micelles; sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates; and neutral polymeric micelles. We observed that specific parameters, such as wavelength of maximum emission and fluorescence anisotropy, could be used to ascertain the occurrence of interactions. Affinity constants were determined from changes in the intensity of emission while structural modifications in rotameric conformations were verified from time-resolved measurements. Information about the location and diffusion of peptides in the microheterogeneous systems were obtained from tryptophan emission quenching experiments using N-alkylpyridinium ions. The results show the importance of electrostatic and hydrophobic effects, and of the ionization state of charged residues, in the presence of anionic and amphiphilic SDS in the microheterogeneous systems. Conformational stability of peptides is best preserved in the interaction with the neutral polymeric micelles. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 x 10(10) g(-1) was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in natural (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.
Resumo:
A central tenet of life-history theory is the presence of a trade-off between the size and number of offspring that a female can produce for a given clutch. A crucial assumption of this trade-off is that larger offspring perform better than smaller offspring. Despite the importance of this assumption empirical, field-based tests are rare, especially for marine organisms. We tested this assumption for the marine invertebrate, Diplosoma listerianum, a colonial ascidian that commonly occurs in temperate marine communities. Colonies that came from larger larvae had larger feeding structures than colonies that came from smaller larvae. Colonies that came from larger larvae also had higher survival and growth after 2 weeks in the field than colonies that came from smaller larvae. However, after 3 weeks in the field the colonies began to fragment and we could not detect an effect of larval size. We suggest that offspring size can have strong effects on the initial recruitment of D. listerianum but because of the tendency of this species to fragment, offspring size effects are less persistent in this species than in others.
Resumo:
Evaluation of the aquatic macroinvertebrate community as a tool for monitoring a reservoir in the Pitangui river basin, Parana, Brazil. Benthic and nektonic macroinvertebrates play an important role in the structure and function of aquatic ecosystems and their distribution is influenced by chemical features of the substrate, vegetation composition, and water depth. Knowledge on the fauna contributes to the assessment of water quality and development of biodiversity conservation activities. Different biotic factors affecting the invertebrate community were evaluated in the Alagados reservoir, the main water source of the city of Ponta Grossa, Parana. In five different sampling points, 18,473 specimens of aquatic or semiaquatic macroinvertebrates were collected, belonging to 46 taxa of the phylla Annelida (Hirudinea and Oligochaeta), Mollusca (Gastropoda), Platyhelminthes (Turbellaria), Nematoda and Arthropoda (Arachnida, Crustacea and Insecta). This community was composed mainly of predators (45.7% of the taxa sampled), collectors and/or filterers (23.9%), scrapers (15.2%), shredders (13.0%) and detritivores (2.2%). Diversity (H`) and evenness (J) indices were significantly low for the sites examined, and H` ranged between 0.3301 and 1.0396. Regarding tolerance of organisms to organic pollution, more sensitive taxa were very rare (Plecoptera) or unusual (Trichoptera and Ephemeroptera). Among the more resistant groups are Chironomidae and Hirudinea, both fairly common in the samples. This study corroborates the importance of bioindicators as a tool to assess water quality for human consumption and for the conservation of aquatic environments, integrating physical, chemical and biological factors in monitoring programs.
Resumo:
Streams located in areas of sugarcane cultivation receive high concentrations of metal ions from soils of the adjacent areas causing accumulation of metals in the aquatic sediment. This impact results in environmental problems and leads to bioaccumulation of metal ions in aquatic organisms. In the present study, metal concentrations in different predatory insects were studied in streams near sugarcane cultivation and compared to reference sites. Possible utilisation of predatory insects as bioindicators of metal contamination due to sugarcane cultivation from 13 neotropical streams was evaluated. Ion concentrations of Al, Cd, Cr, Cu, Zn, Fe, and Mn in adult Belostomatidae (Hemiptera) and in larvae of Libellulidae (Odonata) were analysed. Nine streams are located in areas with sugarcane cultivation, without riparian vegetation (classified as impacted area) and four streams were located in forested areas (reference sites). Metal concentrations in insects were higher near sugarcane cultivations than in control sites. Cluster analysis, complemented by an ANOSIM test, clearly showed that these insect groups are good potential bioindicators of metal contamination in streams located in areas with sugarcane cultivation and can be used in monitoring programmes. We also conclude that Libellulidae appeared to accumulate higher concentrations of metals than Belostomatidae.
Resumo:
As larvae of marine invertebrates age, their response to settlement cues can change. This change can have significant consequences to both the ecology of these organisms, and to their response to antifouling coatings. This study examines how larval age affects the settlement response of larvae to two naturally derived settlement inhibitors, non-polar extracts from the algae Delisea pulchra and Dilophus marginatus, the former of which contains compounds that are in commercial development as antifoulants. Two species of marine invertebrates with non-feeding larvae were investigated: the bryozoans Watersipora subtorquata and Bugula neritina. Larval age strongly affected larval settlement, with older larvae settling at much higher rates than younger larvae. Despite having strong, inhibitory effects on young larvae, the non-polar extracts did not inhibit the settlement of older larvae to the same degree for both species studied. The results show that the effects of ecologically realistic settlement inhibitors are highly dependent on larval age. Given that the age of settling larvae is likely to be variable in the field, such age specific variation in settlement response of larvae may have important consequences for host-epibiont interactions in natural communities.
Resumo:
Infections caused by the yeast Candida albicans represent an increasing threat to debilitated and immunosuppressed patients, and neutropenia is an important risk factor. Monoclonal antibody depletion of neutrophils in mice was used to study the role of these cells in host resistance. Ablation of neutrophils increased susceptibility to both systemic and vaginal challenge. The fungal burden in the kidney increased threefold on day 1, and 100-fold on day 4, and infection was associated with extensive tissue destruction. However, a striking feature of the disseminated disease in neutrophil-depleted animals was the altered pattern of organ involvement. The brain, which is one of the primary target organs in normal mice, was little affected. There was a threefold increase in the number of organisms recovered from the brains of neutrophil-depleted mice on day 4 after infection, but detectable abscesses were rare. In contrast, the heart, which in normal mice shows only minor lesions, developed severe tissue damage following neutrophil depletion. Mice deficient in C5 demonstrated both qualitative and quantitative increases in the severity of infection after neutrophil depletion when compared with C5-sufficient strains. The results are interpreted as reflecting organ-specific differences in the mechanisms of host resistance.
Resumo:
To describe incidence rates and risk factors associated with external ventricular drain (EVD)-related infections at a tertiary Brazilian teaching hospital. The patient cohort consisted of all patients at a major teaching hospital in Brazil with an EVD during the period 1 April 2007 to 30 June 2008 (15 months). Patients were followed up for 30 days after catheter removal. According to the Center for Diseases Control and Prevention criteria for meningitis/ventriculitis, all of the central nervous system (CNS) infections that occurred during this period could be considered to be meningitis or ventriculitis related to EVD placement. Infection rates were calculated using different denominators, such as (1) per patient (incidence), (2) per procedure, and (3) per 1,000 catheter-days (drain-associated infection rate). Patient demographic data, medical history of underlying diseases, antibiotic prophylaxis usage, American Society of Anesthesiologists Score classification, duration of surgery and hospitalization, length of time the EVD was in place, and overall mortality were evaluated during the study period. A logistic regression model was developed to identify factors associated with infection. A total of 119 patients, 130 EVD procedures, and 839 catheter-days were evaluated. The incidence of infection was 18.3%, the infection rate was 16.9% per procedure, and the drain-associated infection rate was 22.4 per 1,000 catheter-days; 77% of the infections were caused by Gram-negative micro-organisms. Only 75% of patients received antibiotic prophylaxis. The infection rate increased with length of the hospital stay. The length of time the catheter was in place was the only independent risk factor associated with infection (p = 0.0369). The incidence of EVD-related infections is high in our hospital, Gram-negative micro-organisms were the most frequent causal agents identified and length of time that the catheter was in place contributed to the infection rate.
Resumo:
The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.
Resumo:
Conclusion: Functional endoscopic sinus surgery (FESS) was found to be effective in treating fever of unknown origin (FUO) in intensive care unit (ICU) patients with rhinosinusitis, with 62% of patients showing improvement within 5 days of the procedure. Objective: To correlate improvement in FUO with FESS drainage of the paranasal sinuses. Methods: Fifty patients that developed FUO during ICU stay, with CT findings suggestive of rhinosinusitis, and showed no improvement in fever after clinical treatment underwent FESS for drainage of the paranasal sinuses and were evaluated for postoperative improvement of fever. Results: The study sample consisted of 50 patients (74% of whom were male, mean age 48.1 years). The most frequent diagnoses at ICU admission were tetanus, pulmonary disease, and cardiovascular disease. In all, 68% of patients underwent nasogastric or enteral intubation. CT scanning most commonly showed involvement of the sphenoid sinus. In 54% of cases, sinusitis was bilateral and extended throughout the maxillary, ethmoidal, and sphenoidal sinuses. Sinusectomy was performed in all patients, and pathological secretion in the paranasal sinuses was seen in 52% of patients during surgery. Gram-negative bacteria were the most commonly isolated organisms, followed by Gram-positive bacteria and fungi. Improvement of fever was found in 82% of patients after FESS; 38% of these improved within the first 48 h post-procedure, and the remaining 62% within the first 5 postoperative days.
Resumo:
Paraffin-embedded samples commonly stored at educational and research institutions constitute tissues banks for follow-up or epidemiological studies; however, the paraffin inclusion process involves the use of substances that can cause DNA degradation. In this study, a PCR protocol was applied to identify Leishmania strains in 33 paraffin-embedded skin samples of patients with American cutaneous leishmaniasis. DNA was obtained by the phenol-chloroform protocol following paraffin removal and then used in PCR or nested PCR based on the nucleotide sequence of the small subunit ribosomal RNA (SSU rDNA). The amplicons obtained were cloned and sequenced to determine the single nucleotide polymorphism that distinguishes between different Leishmania species or groups. This assay allowed to distinguish organisms belonging to the subgenus Viannia and identify L. (Leishmania) amazonensis and L. (L.) chagasi of the Leishmania subgenus. Of the 33 samples, PCR and nested PCR identified 91% of samples. After sequencing the PCR product of 26 samples, 16 were identified as L. (L.) amazonensis, the other 10 contain organisms belonging to the L. (Viannia) sub-genus. These results open a huge opportunity to study stored samples and promote relevant contributions to epidemiological studies.
Resumo:
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.
Resumo:
Objective. The aim of this study was to evaluate the epidemiology of bacterial and fungal pneumonia in lung transplant (LT) recipients and to assess donor-to-host transmission of these microorganisms. Materials and Methods. We retrospectively studied all positive cultures from bronchoalveolar lavage (BAL) of 49 lung transplant recipients and their donors from August 2003 to April 2007. Results. There were 108 episodes of pneumonia during a medium follow-up of 412 days (range, 1-1328 days). The most frequent microorganisms were: Pseudomonas aeruginosa (n = 36; 33.3%), Staphylococcus aureus (n = 29; 26.8%), and Aspergillus spp. (n = 18; 16%). Other fungal infections were due to Fusarium spp., Cryptococcus neoformans, and Paracoccidioides brasiliensis. Of the 31 donors with positive BAL, 15 had S. aureus. There were 21 pretransplant colonized recipients (43%) and 16 of them had suppurative underlying lung disease. P. aeruginosa was the most frequent colonizing organism (59% of pretransplant positive cultures). There were 11 episodes of bacteremia and lungs were the source in 5 cases. Sixteen deaths occurred and 6 (37.5%) were due to infection. Statistical analyses showed association between pretransplant colonizing microorganisms from suppurative lung disease patients and pneumonias after lung transplantation (RR = 4.76; P = .04; 95% CI = 1.02-22.10). No other analyzed factor was significant. Conclusions. Bacterial and fungal infections are frequent and contribute to higher mortality in lung transplant recipients. P. aeruginosa is the most frequent agent of respiratory infections. This study did not observe any impact of donor lung organisms on pneumonia after lung transplantation. Nevertheless, we demonstrated an association between pretransplant colonizing microorganisms and early pneumonias in suppurative lung transplant recipients.