768 resultados para Fibres végétales
Resumo:
Kilpailulliset tekijät ovat johtaneet paperin valmistajat miettimään keinoja valmistuskustannusten leikkaamiseksi. Yksi keino on optimoida raaka-aineiden käyttöä, jota on tehty tässä diplomityössä. Työn tarkoitus on selvittää koeajoin mahdollisuudet kalliimpien raaka-aineiden korvaamiseen edullisemmilla, säilyttäen kuitenkin pohjapaperin laadulliset ominaisuudet. Työ on toteutettu UPM Kymmene Oyj:n Jokilaakson tehtailla, Jämsänkosken paperitehtaan Tarrapaperit-osastolla. Työssä on käytetty apuna tietokoneohjelmia mallintamaan ja simuloimaan paperissa ja paperin kustannusrakenteessa tapahtuvia muutoksia, mutta merkittävimmässä asemassa ovat olleet koeajot ja erilaisten näytteiden käsittely. Raaka-aineina käytettävien massojen osuuksien optimoinnilla on saatu aikaiseksi merkittäviä kustannussäästöjä, mutta työn yhteydessä on löydetty myös keinoja säästöjen saavuttamiseksi energiankulutusta järkevöittämällä. Luotu malli auttaa jatkossa kustannusrakenteen seurannassa. Mäntysellun osuuden laskulla ja täyteaineen osuuden nostolla saavutetaan merkittävimmät kustannussäästöt, kemihierteellä vaikutus kustannuksiin on vähäisempi. Sähköenergiaa vievä kuitujen jauhatus on järjestetty paperikone 3:lla uudella tavalla, jolla on paitsi saavutettu säästöä energiassa, parannettu myös paperin lujuutta.
Resumo:
Dissolving cellulose is the first main step in preparing novel cellulosicmaterials. Since cellulosic fibres cannot be easily dissolved in water-based solvents, fibres were pretreated with ethanol-acid solution prior to the dissolution. Solubility and changes on the surface of the fibres were studied with microscopy and capillary viscometry. After the treatment, the cellulose fibres were soluble in alkaline urea-water solvent. The nature of this viscous solution was studied rheologically. Cellulose microspheres were prepared by extruding the alkaline cellulose solution through the needle into an acidic medium. By altering the temperature and acidity of the mediumit was possible to adjust the specific surface area and pore sizes of themicrospheres. A typical skin-core structure was found in all samples. Microspheres were oxidised in order to introduce anionic carboxylic acid groups (AGs). Anionic microspheres are more hydrophilic; their water-uptake increased 25 times after oxidation and they could swell almost to their original state (88%) after drying and shrinking. Swelling was studied in simulated physiological environments, corresponding to stomach acid and intestines (pH 1.2-7.4). Oxidised microspheres were used as a drug carriers. They demonstrated a highmass uniformity, which would enable their use for personalised dosing among different patients, including children. The drug was solidified in microspheres in amorphous form. This enhanced solubility and could be used for more challenging drugs with poor solubility. The pores of themicrospheres also remained open after the drug was loaded and they were dried. Regardless of the swelling, the drug was released at a constant rate in all environments.
Resumo:
Effective processes to fractionate the main compounds in biomass, such as wood, are a prerequisite for an effective biorefinery. Water is environmentally friendly and widely used in industry, which makes it a potential solvent also for forest biomass. At elevated temperatures over 100 °C, water can readily hydrolyse and dissolve hemicelluloses from biomass. In this work, birch sawdust was extracted using pressurized hot water (PHWE) flow-through systems. The hypothesis of the work was that it is possible to obtain polymeric, water-soluble hemicelluloses from birch sawdust using flow-through PHW extractions at both laboratory and large scale. Different extraction temperatures in the range 140–200 °C were evaluated to see the effect of temperature to the xylan yield. The yields and extracted hemicelluloses were analysed to obtain sugar ratios, the amount of acetyl groups, furfurals and the xylan yields. Higher extraction temperatures increased the xylan yield, but decreased the molar mass of the dissolved xylan. As the extraction temperature increased, more acetic acid was released from the hemicelluloses, thus further decreasing the pH of the extract. There were only trace amounts of furfurals present after the extractions, indicating that the treatment was mild enough not to degrade the sugars further. The sawdust extraction density was increased by packing more sawdust in the laboratory scale extraction vessel. The aim was to obtain extracts with higher concentration than in typical extraction densities. The extraction times and water flow rates were kept constant during these extractions. The higher sawdust packing degree decreased the water use in the extractions and the extracts had higher hemicellulose concentrations than extractions with lower sawdust degrees of packing. The molar masses of the hemicelluloses were similar in higher packing degrees and in the degrees of packing that were used in typical PHWE flow-through extractions. The structure of extracted sawdust was investigated using small angle-(SAXS) and wide angle (WAXS) x-ray scattering. The cell wall topography of birch sawdust and extracted sawdust was compared using x-ray tomography. The results showed that the structure of the cell walls of extracted birch sawdust was preserved but the cell walls were thinner after the extractions. Larger pores were opened inside the fibres and cellulose microfibrils were more tightly packed after the extraction. Acetate buffers were used to control the pH of the extracts during the extractions. The pH control prevented excessive xylan hydrolysis and increased the molar masses of the extracted xylans. The yields of buffered extractions were lower than for plain water extractions at 160–170 °C, but at 180 °C yields were similar to those from plain water and pH buffers. The pH can thus be controlled during extraction with acetate buffer to obtain xylan with higher molar mass than those obtainable using plain water. Birch sawdust was extracted both in the laboratory and pilot scale. The performance of the PHWE flow-through system was evaluated in the laboratory and the pilot scale using vessels with the same shape but different volumes, with the same relative water flow through the sawdust bed, and in the same extraction temperature. Pre-steaming improved the extraction efficiency and the water flow through the sawdust bed. The extracted birch sawdust and the extracted xylan were similar in both laboratory and pilot scale. The PHWE system was successfully scaled up by a factor of 6000 from the laboratory to pilot scale and extractions performed equally well in both scales. The results show that a flow-through system can be further scaled up and used to extract water-soluble xylans from birch sawdust. Extracted xylans can be concentrated, purified, and then used in e.g. films and barriers, or as building blocks for novel material applications.
Resumo:
Electrical machines have significant improvement potential. Nevertheless, the field is characterized by incremental innovations. Admittedly, steady improvement has been achieved, but no breakthrough development. Radical development in the field would require the introduction of new elements, such that may change the whole electrical machine industry system. Recent technological advancements in nanomaterials have opened up new horizons for the macroscopic application of carbon nanotube (CNT) fibres. With values of 100 MS/m measured on individual CNTs, CNT fibre materials hold promise for conductivities far beyond those of metals. Highly conductive, lightweight and strong CNT yarn is finally within reach; it could replace copper as a potentially better winding material. Although not yet providing low resistivity, the newest CNT yarn offers attractive perspectives for accelerated efficiency improvement of electrical machines. In this article, the potential for using new CNT materials to replace copper in machine windings is introduced. It does so, firstly, by describing the environment for a change that could revolutionize the industry and, secondly, by presenting the breakthrough results of a prototype construction. In the test motor, which is to our knowledge the first in its kind, the presently most electrically conductive carbon nanotube yarn replaces usual copper in the windings.
Resumo:
The interaction between three phenolic compounds (catechin, caffeic acid and ferulic acid) onto two dietary fibres (cellulose and xylan) has been evaluated to inquire possible interferences on the biodisponibility of phenolic compounds. The adsorption kinetics were performed using solutions containing 100 mg/L of phenolic compounds during a contact time ranging between 10 and 120 minutes at pH 2.0, 4.5, and 7.0. After the kinetics, isotherms were obtained using phenolic compounds concentration ranging between 10 and 80 mg/L during 60 minutes, at pH 2.0 and 7.0 and temperature of 36 °C. Results indicate that adsorbed quantities mainly changed in function of pH, however the maximum adsorption was only of 0.978 mg of caffeic acid/g of xylan at pH 2 and after 60 min. Redlich-Peterson model were able to predict the adsorption isotherms of all phenolic compounds onto cellulose, except for caffeic acid at pH 7.0. The low adsorption capacities observed suggest that both dietary fibres are unable to compromise the biodisponibility of phenolic compounds, especially in the small intestine, where they are partially absorbed.
Resumo:
Référence bibliographique : cat. 280, p. 345
Resumo:
Référence bibliographique : 282
Resumo:
The purpose of the current investigation was to establish an in-l'itro skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated. whole muscle (SOL and EDL) was dissected from Long Evans rats and incubated for 60 min in Sigma Medium-199 (resting tension (lg). bubbled with 95:5% 02:C02, 30 ± 2°C, and pH 7.4). Media osmolality was altered to simulate hypo-osmotic (190 ± 10 Osm) (HYPO) or hyper-osmotic conditions (400 ± 10 Osm) (HYPER) while an iso-osmotic condition (290± 1 0 Osm) (CON) served as a control (n= 17.19.17). Following incubation, relative muscle water content decreased with HYPER and increased with HYPO in both muscle types (p<0.05). The cross-sectional area of HYPO SOL type I and type II fibres increased (p<0.05) while the EDL type 11 fibre area decreased in HYPER and increascd from HYPO exposure. Furthermore, HYPER exposure in both muscles lead to decreased ATP and phosphocreatine (p<0.05) and increased creatine and lactate (p<0.05) compared to CON. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acutc alterations in muscle water content and resting muscle metabolism.
Resumo:
Competitive sports participation in youth is becoming increasingly more common in the Western world. It is widely accepted that sports participation, specifically endurance training, is beneficial for physical, psychomotor, and social development of children. The research on the effect of endurance training in children has focused mainly on healthrelated benefits and physiological adaptations, particularly on maximal oxygen uptake. However, corresponding research on neuromuscular adaptations to endurance training and the latter's possible effects on muscle strength in youth is lacking. In children and adults, resistance training can enhance strength and mcrease muscle activation. However, data on the effect of endurance training on strength and neuromuscular adaptations are limited. While some evidence exists demonstrating increased muscle activation and possibly increased strength in endurance athletes compared with untrained adults, the neuromuscular adaptations to endurance training in children have not been examined. Thus, the purpose of this study was to examine maximal isometric torque and rate of torque development (RID), along with the pattern of muscle activation during elbow and knee flexion and extension in muscle-endurancetrained and untrained men and boys. Subjects included 65 males: untrained boys (n=18), endurance-trained boys (n=12), untrained men (n=20) and endurance-trained men (n=15). Maximal isometric torque and rate of torque development were measured using an isokinetic dynamometer (Biodex III), and neuromuscular activation was assessed using surface electromyography (SEMG). Muscle strength and activation were assessed in the dominant arm and leg, in a cross-balanced fashion during elbow and knee flexion and extension. The main variables included peak torque (T), RTD, rate of muscle activation (Q30), Electro-mechanical delay (EMD), time to peak RTD and co-activation index. Age differences in T, RTD, electro-mechanical delay (EMD) and rate of muscle activation (Q30) were consistently observed in the four contractions tested. Additionally, Q30, nonnalized for peak EMG amplitude, was consistently higher in the endurancetrained men compared with untrained men. Co-activation index was generally low in all contractions. For example, during maximal voluntary isometric knee extension, men were stronger, had higher RTD and Q30, whether absolute or nonnalized values were used. Moreover, boys exhibited longer EMD (64.8 ± 18.5 ms vs. 56.6 ± 15.3 ms, for boys and men respectively) and time to peak RTD (112.4 ± 33.4 ms vs. 100.8 ± 39.1 ms for boys and men, respectively). In addition, endurance-trained men had lower T compared with untrained men, yet they also exhibited significantly higher nonnalized Q30 (1.9 ± 1.2 vs. 1.1 ± 0.7 for endurance-trained men and untrained men, respectively). No training effect was apparent in the boys. In conclusion, the findings demonstrate muscle strength and activation to be lower in children compared with adults, regardless of training status. The higher Q30 of the endurance-trained men suggests neural adaptations, similar to those expected in response to resistance training. The lower peak torque may su9gest a higher relative involvement oftype I muscle fibres in the endurance-trained athletes. Future research is required to better understand the effect of growth and development on muscle strength and activation patterns during dynamic and sub-maximal isometric contractions. Furthennore, training intervention studies could reveal the effects of endurance training during different developmental stages, as well as in different muscle groups.
Resumo:
ABSTRACT The myosm regulatory light chain (RLC) of type II fibres is phosphorylated by Ca2+ -calmodulin dependent myosin light chain kinase (skMLCK) during muscular activation. The purpose of this study was to explore the effect of skMLCK gene ablation on the fatigability of mouse skeletal muscles during repetitive stimulation. The absence of myosin RLC phosphorylation in skMLCK knockout muscles attenuated contractile performance without a significant metabolic cost. Twitch force was potentiated to a greater extent in wildtype muscles until peak force had diminished to ~60% of baseline (37.2 ± 0.05% vs. 14.3 ± 0.02%). Despite no difference in peak force (Po) and shortening velocity (Vo), rate of force development (+dP/dt) and shortening-induced deactivation (SID) were almost two-fold greater in WT muscles. The present results demonstrate that myosin RLC phosphorylation may improve contractile performance during fatigue; providing a contractile advantage to working muscles and protecting against progressive fatigue.
Resumo:
This thesis investigated the subcellular location of skeletal muscle PLIN proteins (PLIN2, PLIN3, and PLIN5) as well as protein interactions with ATGL and HSL at rest and following lipolytic stimulation. In addition, the serine phosphorylation state of PLIN2, PLIN3, and PLIN5 was determined at rest and following lipolytic stimulation. An isolated whole muscle technique was used to study the effects of contraction and epinephrine-induced lipolysis. This method allowed for the examination of the effects of contraction and epinephrine alone and in combination. Further, the soleus was chosen for investigating the role of PLIN proteins in skeletal muscle lipolysis due to its suitability for isolated incubation, and the fact that it is primarily oxidative in nature (~80% type I fibres). It has also been previously shown to have the greatest reliance on lipid metabolism and for this reason is ideal for investigating the role of PLIN proteins in lipolysis. Immunofluorescence microscopy revealed that skeletal muscle lipid droplets are partially co-localized to both PLIN2 and PLIN5 and that contraction does not affect the amount of colocalization, indicating that PLIN5 is not recruited to lipid droplets with contraction (PLIN2 ~65%; PLIN5 ~56%). Results from the immunoprecipitation studies revealed that with lipolysis in skeletal muscle the interaction between ATGL and CGI-58 is increased (study 2: 128% with contraction, p<0.05; study 3: 50% with contraction, 25% epinephrine, 80% contraction + epinephrine, p>0.05). Further PLIN2, PLIN3, and PLIN5 all interact with ATGL and HSL, while only PLIN3 and PLIN5 interact with CGI-58. Among these interactions, the association between PLIN2 and ATGL decreases with lipolytic stimulation (study 2: 21% with contraction, p<0.05). Finally our results demonstrate that PLIN3 and PLIN5 are serine phosphorylated at rest and that the level of phosphorylation remains unchanged in the face of either contractile or adrenergic stimulation. In summary, the regulation of skeletal muscle lipolysis is a complex process involving multiple proteins and enzymes. The skeletal muscle PLIN proteins likely play a role in skeletal muscle lipid droplet dynamics, and the data from this thesis indicate that these proteins may work together in regulating lipolysis by interaction with both ATGL and HSL.
Resumo:
Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.
Resumo:
Neuropeptides can modulate physiological properties of neurons in a cell-specific manner. The present work examines whether a neuropeptide can also modulate muscle tissue in a cell-specific manner, using identified muscle cells in third instar larvae of fruit flies. DPKQDFMRFa, a modulatory peptide in the fruit fly Drosophila melanogaster, has been shown to enhance transmitter release from motor neurons and to elicit contractions by a direct effect on muscle cells. We report that DPKQDFMRFa causes a nifedipine-sensitive drop in input resistance in some muscle cells (6 and 7) but not others (12 and 13). The peptide also increased the amplitude of nerve-evoked contractions and compound excitatory junctional potentials (EJPs) to a greater degree in muscle cells 6 and 7 than 12 and 13. Knocking down FMRFa receptor (FR) expression separately in nerve and muscle indicate that both presynaptic and postsynaptic FR expression contributed to the enhanced contractions, but EJP enhancement was due mainly to presynaptic expression. Muscle-ablation showed that DPKQDFMRFa induced contractions and enhanced nerve-evoked contractions more strongly in muscle cells 6 and 7 than cells 12 and 13. In situ hybridization indicated that FR expression was significantly greater in muscle cells 6 and 7 than 12 and 13. Taken together, these results indicate that DPKQDFMRFa can elicit cell-selective effects on muscle fibres. The ability of neuropeptides to work in a cell-selective manner on neurons and muscle cells may help explain why so many peptides are encoded in invertebrate and vertebrate genomes.