964 resultados para Fertility of soil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m and 0.15 to 0.3 m of the mineral soil from each of the experimental plots in March and October 2004. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in April and September 2005. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new site with Lateglacial palaeosols covered by 0.8 - 2.4 m thick aeolian sands is presented. The buried soils were subjected to multidisciplinary analyses (pedology, micromorphology, geochronology, dendrology, palynology, macrofossils). The buried soil cover comprises a catena from relatively dry ('Nano'-Podzol, Arenosol) via moist (Histic Gleysol, Gleysol) to wet conditions (Histosol). Dry soils are similar to the so-called Usselo soil, as described from sites in NW Europe and central Poland. The buried soil surface covers ca. 3.4 km**2. Pollen analyses date this surface into the late Aller0d. Due to a possible contamination by younger carbon, radiocarbon dates are too young. OSL dates indicate that the covering by aeolian sands most probably occurred during the Younger Dryas. Botanical analyses enables the reconstruction of a vegetation pattern typical for the late Allerod. Large wooden remains of pine and birch were recorded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vast areas on the Tibetan Plateau are covered by alpine sedge mats consisting of different species of the genus Kobresia. These mats have topsoil horizons rich in rhizogenic organic matter which creates turfs. As the turfs have recently been affected by a complex destruction process, knowledge concerning their soil properties, age and pedogenesis are needed. In the core area of Kobresia pygmaea mats around Nagqu (central Tibetan Plateau, ca. 4500 m a.s.l.), four profiles were subjected to pedological, paleobotanical and geochronological analyses concentrating on soil properties, phytogenic composition and dating of the turf. The turf of both dry K. pygmaea sites and wet Kobresia schoenoides sites is characterised by an enrichment of living (dominant portion) and dead root biomass. In terms of humus forms, K. pygmaea turfs can be classified as Rhizomulls mainly developed from Cambisols. Wet-site K. schoenoides turfs, however, can be classified as Rhizo-Hydromors developed from Histic Gleysols. At the dry sites studied, the turnover of soil organic matter is controlled by a non-permafrost cold thermal regime. Below-ground remains from sedges are the most frequent macroremains in the turf. Only a few pollen types of vascular plants occur, predominantly originating from sedges and grasses. Large amounts of microscopic charcoal (indeterminate) are present. Macroremains and pollen extracted from the turfs predominantly have negative AMS 14C ages, giving evidence of a modern turf genesis. Bulk-soil datings from the lowermost part of the turfs have a Late Holocene age comprising the last ca. 2000 years. The development of K. pygmaea turfs was most probably caused by an anthropo(zoo)-genetically initiated growth of sedge mats replacing former grass-dominated vegetation ('steppe'). Thus the turfs result from the transformation of pre-existing topsoils comprising a secondary penetration and accumulation of roots. K. schoenoides turfs, however, are characterised by a combined process of peat formation and penetration/accumulation of roots probably representing a (quasi) natural wetland vegetation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2008. In October 2008, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March 2006. In October 2006 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Measurements from the management experiment are separated into 0 to 0.08 m and 0.08 to 0.15 m. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2007. In March and in October 2007 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).

Relevância:

100.00% 100.00%

Publicador: