938 resultados para Fatigue Crack Nucleation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermally activated energy on the dislocation emission from a crack tip in BCC metal Mo is simulated in this paper. Based on the correlative reference model on which the flexible displacement boundary scheme is introduced naturally, the simulation shows that as temperature increases the critical stress intensity factor for the first dislocation emission will decrease and the total number of emitted dislocations increase for the same external load. The dislocation velocity and extensive distance among partial dislocations are not sensitive to temperature. After a dislocation emission, two different deformation slates are observed, the stable and unstable deformation states. In the stable deformation slate, the nucleated dislocation will emit from the crack tip and piles up at a distance far away from the crack tip, after that the new dislocation can not be nucleated unless the external loading increases. In the unstable deformation state, a number of dislocations can be emitted from the crack lip continuously under the same external load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal-mechanical loading on a surface mount assembly with interface cracks between the solder and the resistor and between the solder and the printed circuit board (PCB) was studied using a non-linear thermal finite element analysis. The thermal effect was taken as cooling from the solder eutectic temperature to room temperature. Mechanical loading at the ends of the PCB was also applied. The results showed that cooling had the effect of causing large residual shear displacement at the region near the interface cracks. The mechanical loading caused additional crack opening displacements. The analysis on the values of J-integral for the interface cracks showed that J-integral was approximately path independent, and that the effect of crack at the solder/PCB interface is much more serious than that between the component and solder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the problem of a cylindrical crack located in a functionally graded material (FGM) interlayer between two coaxial elastic dissimilar homogeneous cylinders and subjected to a torsional impact loading is considered. The shear modulus and the mass density of the FGM interlayer are assumed to vary continuously between those of the two coaxial cylinders. This mixed boundary value problem is first reduced to a singular integral equation with a Cauchy type kernel in the Laplace domain by applying Laplace and Fourier integral transforms. The singular integral equation is then solved numerically and the dynamic stress intensity factor (DSIF) is also obtained by a numerical Laplace inversion technique. The DSIF is found to rise rapidly to a peak and then reduce and tend to the static value almost without oscillation. The influences of the crack location, the FGM interlayer thickness and the relative magnitudes of the adjoining material properties are examined. It is found among others that, by increasing the FGM gradient, the DSIF can be greatly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanical model of a laser transformation hardening specimen with a crack in the middle of the hardened layer is developed to quantify the effects of the residual stress and hardness gradient on crack driving force in terms of J-integral. It is assumed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dislocation simulation method is used in this paper to derive the basic equations for a crack perpendicular to the bimaterial interface in a finite solid. The complete solutions to the problem, including the T stress and the stress intensity factors are obtained. The stress field characteristics are investigated in detail. It is found that when the crack is within a weaker material, the stress intensity factor is smaller than that in a homogeneous material and it decreases when the distance between the crack tip and interface decreases. When the crack is within a stiffer material, the stress intensity factor is larger than that in a homogeneous material and it increases when the distance between the crack tip and interface decreases. In both cases, the stress intensity factor will increase when the ratio of the size of a sample to the crack length decreases. A comparison of stress intensity factors between a finite problem and an infinite problem has been given also. The stress distribution ahead of the crack tip, which is near the interface, is shown in details and the T stress effect is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the conformal mapping method was adopted to solve the problem of an infinite plate containing a central lip-shaped crack subjected to remote biaxial loading. A kind of leaf-shaped configuration was also constructed in order to solve the problem. The analytical result showed that the singularity order of the stress field at the tip of a lip-shaped crack remains -1/2, despite the difference in notch-crack width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic fractography and scanning electronic microscopy (SEM) are used to determine the direct relationship between the fracture surface morphology and the main crack velocity during the rapid rupture of polymethylmethacrylate (PMMA). Two critical crack velocities are found for the fracture. Quasi-parabolic markings will appear when the crack speed exceeds the first critical speed. Crack propagating at speed above the second critical speed leaves a thicket of small branches penetrating the surface behind them. Both critical speeds are functions of the thickness of the specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation twinning near a crack tip is observed in b.c.c. metal Mo based on molecular dynamics simulation at temperature T = 50 K and loading rate (K) over dot(II) = 0.0706 MPa m(1/2)/ps. The defor mation twinning is closely controlled by both the crystal geometry orientation and the stress distribution. The width of the deformation twin band is affected by the distance between the upper and lower crack surfaces. The twin plane and twin direction are (<1(1)over bar>2) and [(1) over bar 11], respectively. The initial crack extension occurs in the deformation twin region near the crack tip. The simulation shows that the extension direction of the crack is changed as the crack propagates over the twinning boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on the aging hardening behavior of four Al-Li-Zn-Mg-Cu alloys were carried out using differential scanning calorimetry, transmission electron microscopy and hardness measurement. It is shown that the addition of Li inhibits the formation of Zn-rich G.P. zones in Al-Zn-Mg-Cu alloys. The dominant aging hardening precipitates is delta'(Al3Li) phase. Coarse T ((AlZn)(49)Mg-32) phase, instead of MgZn2, precipitates primarily on grain boundaries, and provides little strengthening. The multi-stop aging involving plastic deformation introduces in the matrix a high concentration of structural defects. These defects play different role on the nucleation of Zn-rich G.P. zones in different alloys. For the Li free alloy, structural defects act as vacancy sinks and tend to suppress the homogeneous precipitation of G.P. zones, while for the Li containing alloys, these defects promote the heterogeneous nucleation of G.P. zones and metastable MgZn2. A significant aging hardening effect is attained in deformed Li containing alloys due to the extra precipitation of fine MgZn2 in the matrix combined with deformation hardening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the transient dynamic stress intensity factor (SIF) is determined for an interface crack between two dissimilar half-infinite isotropic viscoelastic bodies under impact loading. An anti-plane step loading is assumed to act suddenly on the surface of interface crack of finite length. The stress field incurred near the crack tip is analyzed. The integral transformation method and singular integral equation approach are used to get the solution. By virtue of the integral transformation method, the viscoelastic mixed boundary problem is reduced to a set of dual integral equations of crack open displacement function in the transformation domain. The dual integral equations can be further transformed into the first kind of Cauchy-type singular integral equation (SIE) by introduction of crack dislocation density function. A piecewise continuous function approach is adopted to get the numerical solution of SIE. Finally, numerical inverse integral transformation is performed and the dynamic SIF in transformation domain is recovered to that in time domain. The dynamic SIF during a small time-interval is evaluated, and the effects of the viscoelastic material parameters on dynamic SIF are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using dislocation simulation approach, the basic equation for a finite crack perpendicular to and terminating at a bimaterial interface is formulated. A novel expansion method is proposed for solving the problem. The complete solution to the problem, including the explicit formulae for the T stresses ahead of the crack tip and the stress intensity factors are presented. The stress held characteristics are analysed in detail. It is found that normal stresses sigma(x) and sigma(y) ahead of the crack tip, are characterised by Q fields if the crack is within a stiff material and the parameters \p(T)\ and \q(T)\ are very small, where Q is a generalised stress intensity factor for a crack normal to and terminating at the interface. If the crack is within a weak material, the normal stresses sigma(x) and sigma(y) are dominated by the Q field plus T stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of stress-strain near a crack tip in a rubber sheet is investigated by employing the constitutive relation given by Gao (1997). It is shown that the crack tip field is composed of two shrinking sectors and one expanding sector. The stress state near the crack tip is in uniaxial tension. The analytical solutions are obtained for both expanding and shrinking sectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No abstract.