981 resultados para Failure investigation
Resumo:
Background: Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may 34 require surgical correction by attaching a rod to the patient’s spine using screws 35 implanted in the vertebral bodies. Surgeons achieve an intra-operative reduction in the 36 deformity by applying compressive forces across the intervertebral disc spaces while 37 they secure the rod to the vertebra. We were interested to understand how the 38 deformity correction is influenced by increasing magnitudes of surgical corrective forces 39 and what tissue level stresses are predicted at the vertebral endplates due to the 40 surgical correction. 41 Methods: Patient-specific finite element models of the osseoligamentous spine and 42 ribcage of eight AIS patients who underwent single rod anterior scoliosis surgery were 43 created using pre-operative computed tomography (CT) scans. The surgically altered 44 spine, including titanium rod and vertebral screws, was simulated. The models were 45 analysed using data for intra-operatively measured compressive forces – three load 46 profiles representing the mean and upper and lower standard deviation of this data 47 were analysed. Data for the clinically observed deformity correction (Cobb angle) were 48 compared with the model-predicted correction and the model results investigated to 49 better understand the influence of increased compressive forces on the biomechanics of 50 the instrumented joints. 51 Results: The predicted corrected Cobb angle for seven of the eight FE models were 52 within the 5° clinical Cobb measurement variability for at least one of the force profiles. 53 The largest portion of overall correction was predicted at or near the apical 54 intervertebral disc for all load profiles. Model predictions for four of the eight patients 55 showed endplate-to-endplate contact was occurring on adjacent endplates of one or 56 more intervertebral disc spaces in the instrumented curve following the surgical loading 57 steps. 58 Conclusion: This study demonstrated there is a direct relationship between intra-59 operative joint compressive forces and the degree of deformity correction achieved. The 60 majority of the deformity correction will occur at or in adjacent spinal levels to the apex 61 of the deformity. This study highlighted the importance of the intervertebral disc space 62 anatomy in governing the coronal plane deformity correction and the limit of this 63 correction will be when bone-to-bone contact of the opposing vertebral endplates 64 occurs.
Resumo:
A key issue in the field of inclusive design is the ability to provide designers with an understanding of people's range of capabilities. Since it is not feasible to assess product interactions with a large sample, this paper assesses a range of proxy measures of design-relevant capabilities. It describes a study that was conducted to identify which measures provide the best prediction of people's abilities to use a range of products. A detailed investigation with 100 respondents aged 50-80 years was undertaken to examine how they manage typical household products. Predictor variables included self-report and performance measures across a variety of capabilities (vision, hearing, dexterity and cognitive function), component activities used in product interactions (e.g. using a remote control, touch screen) and psychological characteristics (e.g. self-efficacy, confidence with using electronic devices). Results showed, as expected, a higher prevalence of visual, hearing, dexterity, cognitive and product interaction difficulties in the 65-80 age group. Regression analyses showed that, in addition to age, performance measures of vision (acuity, contrast sensitivity) and hearing (hearing threshold) and self-report and performance measures of component activities are strong predictors of successful product interactions. These findings will guide the choice of measures to be used in a subsequent national survey of design-relevant capabilities, which will lead to the creation of a capability database. This will be converted into a tool for designers to understand the implications of their design decisions, so that they can design products in a more inclusive way.
Resumo:
Anisotropic damage distribution and evolution have a profound effect on borehole stress concentrations. Damage evolution is an irreversible process that is not adequately described within classical equilibrium thermodynamics. Therefore, we propose a constitutive model, based on non-equilibrium thermodynamics, that accounts for anisotropic damage distribution, anisotropic damage threshold and anisotropic damage evolution. We implemented this constitutive model numerically, using the finite element method, to calculate stress–strain curves and borehole stresses. The resulting stress–strain curves are distinctively different from linear elastic-brittle and linear elastic-ideal plastic constitutive models and realistically model experimental responses of brittle rocks. We show that the onset of damage evolution leads to an inhomogeneous redistribution of material properties and stresses along the borehole wall. The classical linear elastic-brittle approach to borehole stability analysis systematically overestimates the stress concentrations on the borehole wall, because dissipative strain-softening is underestimated. The proposed damage mechanics approach explicitly models dissipative behaviour and leads to non-conservative mud window estimations. Furthermore, anisotropic rocks with preferential planes of failure, like shales, can be addressed with our model.
Resumo:
This paper explores the similarities and differences between bicycle and motorcycle crashes with other motor vehicles. If similar treatments can be effective for both bicycle and motorcycle crashes, then greater benefits in terms crash costs saved may be possible for the same investment in treatments. To reduce the biases associated with under-reporting of these crashes to police, property damage and minor injury crashes were excluded. The most common crash type for both bicycles (31.1%) and motorcycles (24.5%) was intersection from adjacent approaches. Drivers of other vehicles were coded most at fault in the majority of two-unit bicycle (57.0%) and motorcycle crashes (62.7%). The crash types, patterns of fault and factors affecting fault were generally similar for bicycle and motorcycle crashes. This confirms the need to combat the factors contributing to failure of other drivers to yield right of way to two-wheelers, and suggest that some of these actions should prove beneficial to the safety of both motorized and non-motorized two-wheelers. In contrast, child bicyclists were more often at fault, particularly in crashes involving a vehicle leaving the driveway or footpath. The greater reporting of violations by riders and drivers in motorcycle crashes also deserves further investigation.
Resumo:
Introduction: Lower limb function in hurdling is patently asymmetrical. The lead limb undertakes the preparatory and landing steps while the trail limb contends with the hurdle and recovery steps. Discrete loading profiles of these steps will reflect the asymmetrical function and may provide useful insight into injury mechanisms. A pilot study was undertaken to determine the loading profiles of the hurdle, landing and recovery steps of elite male hurdlers. Equivalent data for steps between hurdles, where the running action is more symmetrical, were used for the purpose of comparison, simultaneously minimising the confounding effect of speed. Methodology: In-shoe pressures were recorded (FScan, 200 Hz) for four elite male hurdlers while they completed a routine hurdle drill at a self-selected fast but sub-race speed. The drill comprised of three consecutive hurdles. Data for the hurdle, landing and recovery steps of the first and second hurdles, along with data for the running steps between hurdles 1 and 2, and 2 and 3, were used for the purpose of analysis. Peak pressures within 1cm2 masks were determined for the hallux, first, central and fifth metatarsals (T1, M1, M2–4 and M5 respectively). Peak pressure (kPa) and loading duration (ms) for the hurdle, landing and recovery steps are reported as a percentage of the respective limb-matched values for between-hurdle steps. Results/discussion: For between-hurdle steps, T1, M1 and M2–4 peak pressures were 312/357, 356/306 and 362/368 kPa, lead/trail limbs respectively. For the hurdle, landing and recovery steps, pressures at T1 and M1 increased. For T1 the increases were in the order of 17%, 36% and 8% (hurdle, landing and recovery steps, respectively) while the corresponding increases at M1 were 7%, 54% and 20%. Pressures at M2–4 were similar for all steps, while M5 loaded erratically. For the between-hurdle steps, the loading durations at T1, M1 and M2–4, were 160/162, 170/142 and 190/191 ms, respectively. For the landing step, loading duration decreased for T1, M1and M2–4 (−8%, −19% and −18%, respectively). In the hurdle step, loading duration decreased for the metatarsals but not for T1. Conclusions: The hurdling action leads to regional pressure increases that act for shorter durations in comparison to the between-hurdle running steps. These changes are most notable at the first metatarsal, a common site of foot injury.
Resumo:
Cold-formed steel lipped channels are commonly used in LSF wall construction as load bearing studs with plasterboards on both sides. Under fire conditions, cold-formed thin-walled steel sections heat up quickly resulting in fast reduction in their strength and stiffness. Usually the LSF wall panels are subjected to fire from one side which will cause thermal bowing, neutral axis shift and magnification effects due to the development of non-uniform temperature distributions across the stud. This will induce an additional bending moment in the stud and hence the studs in LSF wall panels should be designed as a beam column considering both the applied axial compression load and the additional bending moment. Traditionally the fire resistance rating of these wall panels is based on approximate prescriptive methods. Very often they are limited to standard wall configurations used by the industry. Therefore a detailed research study is needed to develop fire design rules to predict the failure load and hence the failure time of LSF wall panels subject to non-uniform temperature distributions. This paper presents the details of an investigation to develop suitable fire design rules for LSF wall studs under non-uniform elevated temperature distributions. Applications of the previously developed fire design rules based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 to LSF wall studs were investigated in detail and new simplified fire design rules based on AS/NZS 4600 and Eurocode 3 Part 1.3 were proposed in the current study with suitable allowances for the interaction effects of compression and bending actions. The accuracy of the proposed fire design rules was verified by using the results from full scale fire tests and extensive numerical studies.
Resumo:
Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.
Resumo:
Ambiguity resolution plays a crucial role in real time kinematic GNSS positioning which gives centimetre precision positioning results if all the ambiguities in each epoch are correctly fixed to integers. However, the incorrectly fixed ambiguities can result in large positioning offset up to several meters without notice. Hence, ambiguity validation is essential to control the ambiguity resolution quality. Currently, the most popular ambiguity validation is ratio test. The criterion of ratio test is often empirically determined. Empirically determined criterion can be dangerous, because a fixed criterion cannot fit all scenarios and does not directly control the ambiguity resolution risk. In practice, depending on the underlying model strength, the ratio test criterion can be too conservative for some model and becomes too risky for others. A more rational test method is to determine the criterion according to the underlying model and user requirement. Miss-detected incorrect integers will lead to a hazardous result, which should be strictly controlled. In ambiguity resolution miss-detected rate is often known as failure rate. In this paper, a fixed failure rate ratio test method is presented and applied in analysis of GPS and Compass positioning scenarios. A fixed failure rate approach is derived from the integer aperture estimation theory, which is theoretically rigorous. The criteria table for ratio test is computed based on extensive data simulations in the approach. The real-time users can determine the ratio test criterion by looking up the criteria table. This method has been applied in medium distance GPS ambiguity resolution but multi-constellation and high dimensional scenarios haven't been discussed so far. In this paper, a general ambiguity validation model is derived based on hypothesis test theory, and fixed failure rate approach is introduced, especially the relationship between ratio test threshold and failure rate is examined. In the last, Factors that influence fixed failure rate approach ratio test threshold is discussed according to extensive data simulation. The result shows that fixed failure rate approach is a more reasonable ambiguity validation method with proper stochastic model.
Resumo:
Deep Raman Spectroscopy is a domain within Raman spectroscopy consisting of techniques that facilitate the depth profiling of diffusely scattering media. Such variants include Time-Resolved Raman Spectroscopy (TRRS) and Spatially-Offset Raman Spectroscopy (SORS). A recent study has also demonstrated the integration of TRRS and SORS in the development of Time-Resolved Spatially-Offset Raman Spectroscopy (TR-SORS). This research demonstrates the application of specific deep Raman spectroscopic techniques to concealed samples commonly encountered in forensic and homeland security at various working distances. Additionally, the concepts behind these techniques are discussed at depth and prospective improvements to the individual techniques are investigated. Qualitative and quantitative analysis of samples based on spectral data acquired from SORS is performed with the aid of multivariate statistical techniques. By the end of this study, an objective comparison is made among the techniques within Deep Raman Spectroscopy based on their capabilities. The efficiency and quality of these techniques are determined based on the results procured which facilitates the understanding of the degree of selectivity for the deeper layer exhibited by the individual techniques relative to each other. TR-SORS was shown to exhibit an enhanced selectivity for the deeper layer relative to TRRS and SORS whilst providing spectral results with good signal-to-noise ratio. Conclusive results indicate that TR-SORS is a prospective deep Raman technique that offers higher selectivity towards deep layers and therefore enhances the non-invasive analysis of concealed substances from close range as well as standoff distances.
Resumo:
Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are measures or ways to improve the energy performance and energy efficiency of buildings. This study surveyed various energy-efficient approaches for commercial building and identifies Envelope Thermal Transfer Value (ETTV) and Green applications (Living wall, Green facade and Green roof) as most important and effective methods. An in-depth investigation was carried out on these energy-efficient approaches. It has been found that no ETTV model has been developed for sub-tropical climate of Australia. Moreover, existing ETTV equations developed for other countries do not take roof heat gain into consideration. Furthermore, the relationship of ETTV and different Green applications have not been investigated extensively in any literature, and the energy performance of commercial buildings in the presence of Living wall, Green facade and Green roof has not been investigated in the sub-tropical climate of Australia. The study has been conducted in two phases. First, the study develops the new formulation, coefficient and bench mark value of ETTV in the presence of external shading devices. In the new formulation, roof heat gain has been included in the integrated heat gain model made of ETTV. In the 2nd stage, the study presents the relationship of thermal and energy performance of (a) Living wall and ETTV (b) Green facade and ETTV (c) Combination of Living wall, Green facade and ETTV (d) Combination of Living wall, Green Roof and ETTV in new formulations. Finally, the study demonstrates the amount of energy that can be saved annually from different combinations of Green applications, i.e., Living wall, Green facade; combination of Living wall and Green facade; combination of Living wall and Green roof. The estimations are supported by experimental values obtained from extensive experiments of Living walls and Green roofs.
Resumo:
Serial killers are among the most popular and enduring character types in contemporary culture. In this exegesis I investigate one of the reasons for this popularity by examining the representational relationships between serial killers and serial consumers. I initially establish that all monsters, whether they are vampires, werewolves or serial killers, emerge from cultural anxieties and signify the anxiety which gave them birth. I go on to identify that the cultural anxiety at play with serial killers is consumerism and in doing so, I identify two key parallels between the serial killer and the consumer, namely a sense of lack and a desire for transformation. I then examine the ways in which the serial killer is representative of the consumer in three exemplar texts, The Silence of the Lambs by Thomas Harris, American Psycho by Bret Easton Ellis and Darkly Dreaming Dexter by Jeff Lindsay. I go on to self-reflexively examine the creation of my novel Carnivore, the accompanying draft of which has been influenced by both the exemplar texts and the findings of the exegesis.
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.
Resumo:
Information and communications technologies are a significant component of the healthcare domain and electronic health records play a major role within it. As a result, it is important that they are accepted en masse by healthcare professionals. How healthcare professionals perceive the usefulness of electronic health records and their attitudes towards them have been shown to have significant effects on their overall acceptance. This paper investigates the role of perceived usefulness and attitude on the intention to use electronic health records by future healthcare professionals using polynomial regression with response surface analysis. Results show that the relationship is more complex than predicted in prior research. The paper concludes that the predicting properties of the above determinants must be further investigated to clearly understand their role in predicting the intention to use electronic health records and in designing systems that are better adopted by healthcare professionals of the future.
Resumo:
Accuracy of dose delivery in external beam radiotherapy is usually verified with electronic portal imaging (EPI) in which the treatment beam is used to check the positioning of the patient. However the resulting megavoltage x-ray images suffer from poor quality. The image quality can be improved by developing a special operating mode in the linear accelerator. The existing treatment beam is modified such that it produces enough low-energy photons for imaging. In this work the problem of optimizing the beam/detector combination to achieve optimal electronic portal image quality is addressed. The linac used for this study was modified to produce two experimental photon beams. These beams, named Al6 and Al10, were non-flat and were produced by 4MeV electrons hitting aluminum targets, 6 and 10mm thick respectively. The images produced by a conventional EPI system (6MV treatment beam and camera-based EPID with a Cu plate & Gd2O2S screen ) were compared with the images produced by the experimental beams and various screens with the same camera). The contrast of 0.8cm bone equivalent material in 5 cm water increased from 1.5% for the conventional system to 11% for the combination of Al6 beam with a 200mg/cm2 Gd2O2S screen. The signal-to-noise ratio calculated for 1cGy flood field images increased by about a factor of two for the same EPI systems. The spatial resolution of the two imaging systems was comparable. This work demonstrates that significant improvements in portal image contrast can be obtained by simultaneous optimization of the linac spectrum and EPI detector.