964 resultados para Factor Xa-like Protease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for a ntiviral intervention but also a key player i n the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TCPTP). T he aim of this study was to identify novel cellular substrates o f the N S3-4A protease and to investigate their role in the replication and pathogenesis of HCV. Methods: Cell lines inducibly expressing t he NS3-4A protease were analyzed in basal as well as interferon-α-stimulated states by stable isotopic l abeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling stringent criteria for potential substrates or products of the NS3-4A protease were further i nvestigated in different experimental systems as well a s in liver biopsies from patients with chronic hepatitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 18 candidates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a n ovel cellular substrate of the H CV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a p roviral factor involved in viral particle production but not in HCV entry or HCV RNA replication. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of GPx8 cleavage for protein function are underway. The identification of novel cellular substrates o f the HCV N S3-4A protease should yield new insights i nto the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel targets for antiviral intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. METHODOLOGY AND PRINCIPAL FINDINGS: To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. SIGNIFICANCE: Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive research is devoted to unravel the neurobiological mechanisms mediating adult hippocampal neurogenesis, its regulation by antidepressants, and its behavioral consequences. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is expressed in the CNS, where its function is unknown. Here, we show, for the first time, the relevance of MIF expression for adult hippocampal neurogenesis. We identify MIF expression in neurogenic cells (in stem cells, cells undergoing proliferation, and in newly proliferated cells undergoing maturation) in the subgranular zone of the rodent dentate gyrus. A causal function for MIF in cell proliferation was shown using genetic (MIF gene deletion) and pharmacological (treatment with the MIF antagonist Iso-1) approaches. Behaviorally, genetic deletion of MIF resulted in increased anxiety- and depression-like behaviors, as well as of impaired hippocampus-dependent memory. Together, our studies provide evidence supporting a pivotal function for MIF in both basal and antidepressant-stimulated adult hippocampal cell proliferation. Moreover, loss of MIF results in a behavioral phenotype that, to a large extent, corresponds with alterations predicted to arise from reduced hippocampal neurogenesis. These findings underscore MIF as a potentially relevant molecular target for the development of treatments linked to deficits in neurogenesis, as well as to problems related to anxiety, depression, and cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parachlamydia acanthamoebae is a Chlamydia-related organism whose pathogenic role in pneumonia is supported by serological and molecular clinical studies and an experimental mouse model of lung infection. Toll-like receptors (TLRs) play a seminal role in sensing microbial products and initiating innate immune responses. The aim of this study was to investigate the roles of MyD88, TLR2, and TLR4 in the interaction of Parachlamydia with macrophages. Here, we showed that Parachlamydia entered bone-marrow derived macrophages (BMDMs) in a TLR-independent manner but did not multiply intracellularly. Interestingly, compared to live bacteria, heat-inactivated Parachlamydia induced the production of substantial amounts of tumor necrosis factor alpha (TNF), interleukin-6 (IL-6), and IL-12p40 by BMDMs and of TNF and IL-6 by peritoneal macrophages as well as RAW 264.7 and J774 macrophage cell lines. Cytokine production by BMDMs, which was partially inhibited upon trypsin treatment of Parachlamydia, was dependent on MyD88, TLR4, and, to a lesser extent, TLR2. Finally, MyD88(-/-), TLR4(-/-), and TLR2(-/-) mice were as resistant as wild-type mice to lung infection following the intratracheal instillation of Parachlamydia. Thus, in contrast to Chlamydia pneumoniae, Parachlamydia acanthamoebae weakly stimulates macrophages, potentially compensating for its low replication capacity in macrophages by escaping the innate immune surveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skin is the largest organ of the human body and protects it from water loss and mechanical damage. This barrier function is mainly provided by the epidermis, the outermost layer of the skin. This balance is regulated by several factors, including serine proteases, serine protease inhibitors and protease target substrates, such as receptors. Any mutations or alterations in the expression of these factors can lead to skin diseases. One of the players in this skin balance is the serine protease CAP1/Prss8, whose over-expression causes ichthyosis, hyperplasia and inflammation. This phenotype can be completely restored in the absence of PAR2 (protease-activated receptor 2) (Frateschi et al., 2011). During my thesis, I demonstrated that CAP1/Prss8 induces skin disease even if its catalytic triad is mutated. Additionally, I demonstrated an inhibitory effect of the serine protease-inhibitor nexin-1 (also called serpinE2, PN-1) on CAP1/Prss8, since nexin-1 negated the effects of both catalytically active and inactive CAP1/Prss8 over-expression. Indeed, CAP1/Prss8 and nexin-1 interact in vitro, but independent of the catalytic triad of CAP1/Prss8. These results demonstrate a novel mechanism of interaction between CAP1/Prss8 and nexin-1, and indicate that the catalytic triad of CAP1/Prss8 is dispensable for nexin-1 inhibition and PAR2 activation. These observations in vivo and in vitro could be helpful to specifically target drugs to treat ichthyoses-like skin diseases, like e.g. atopic dermatitis. - La peau est l'un des organes les plus importants du corps humain au regard de sa surface et de sa masse. Ses principales fonctions sont de nous protéger contre l'entrée de pathogènes et de former une barrière imperméable qui empêche la déshydratation. Ces fonctions sont principalement assurées par l'épiderme, la couche la plus superficielle de la peau, et garanties par plusieurs "acteurs", comme par exemple les sérine-protéases, les inhibiteurs de sérine- protéases ou les protéases cibles comme les récepteurs. Toute mutation ou altération de l'un de ces "acteurs" peut aboutir au déclanchement de maladies de la peau. Pour mieux comprendre les conséquences biologiques résultant d'une altération d'expression de CAP1/Prss8, une serine-protéase normalement exprimée au niveau de l'épiderme, nous avons généré des souris transgéniques surexprimant CAP1/Prss8 au niveau de la peau. Ces dernières présentent une peau squameuse, un épiderme hypertrophique, des processus inflammatoires et des prurits conséquents. Ces symptômes disparaissent si le gène du récepteur PAR2, qui régule l'activité des cellules de l'épiderme, est inactivé. Dans le but de vérifier si le phénotype observé chez les souris CAP1/Prss8 résulte de l'action du site catalytique de CAP1/Prss8, nous avons généré des souris CAP1/Prss8 chez lesquelles nous avons muté les trois acides aminés du site catalytique en alanine. Etonnement ces souris ont développé les mêmes problèmes de peau que les souris CAP1/Prss8, démontrant que l'effet de CAP1/Prss8, dans ce modèle animal, n'est pas lié à son site catalytique. Nous avons également montré in vivo, que la sérine-protéase nexin-1 (aussi appelée SERPINE2, PN-1) est capable d'exercer un effet inhibiteur sur CAP1/Prss8 indépendamment de l'activité du site catalytique de CAP1/Prss8. De plus, nous avons remarqué in vitro que CAP1/Prss8 et nexin-1 interagissent bien que la triade catalytique de CAP1/Prss8 soit enzymatiquement inactivée. Ces observations, in vivo et in vitro, pourraient être utilisées dans l'élaboration de médicaments contenant nexin-1, pour le traitement de pathologies de la peau telles l'ichthyose et la dermatite atopique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). Methods: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. Results: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. Conclusions In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Families of clonally expressed major histocompatibility complex (MHC) class I-specific receptors provide specificity to and regulate the function of natural killer (NK) cells. One of these receptors, mouse Ly49A, is expressed by 20% of NK cells and inhibits the killing of H-2D(d) but not D(b)-expressing target cells. Here, we show that the trans-acting factor TCF-1 binds to two sites in the Ly49A promoter and regulates its activity. Moreover, we find that TCF-1 determines the size of the Ly49A NK cell subset in vivo in a dosage-dependent manner. We propose that clonal Ly49A acquisition during NK cell development is regulated by TCF-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glial cells are increasingly recognized as active players that profoundly influence neuronal synaptic transmission by specialized signaling pathways. In particular, astrocytes have been shown recently to release small molecules, such as the amino acids l-glutamate and d-serine as "gliotransmitters," which directly control the efficacy of adjacent synapses. However, it is still controversial whether gliotransmitters are released from a cytosolic pool or by Ca(2+)-dependent exocytosis from secretory vesicles, i.e., by a mechanism similar to the release of synaptic vesicles in synapses. Here we report that rat cortical astrocytes contain storage vesicles that display morphological and biochemical features similar to neuronal synaptic vesicles. These vesicles share some, but not all, membrane proteins with synaptic vesicles, including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) synaptobrevin 2, and contain both l-glutamate and d-serine. Furthermore, they show uptake of l-glutamate and d-serine that is driven by a proton electrochemical gradient. d-Serine uptake is associated with vesicle acidification and is dependent on chloride. Whereas l-serine is not transported, serine racemase, the synthesizing enzyme for d-serine, is anchored to the membrane of the vesicles, allowing local generation of d-serine. Finally, we reveal a previously unexpected mutual vesicular synergy between d-serine and l-glutamate filling in glia vesicles. We conclude that astrocytes contain vesicles capable of storing and releasing d-serine, l-glutamate, and most likely other neuromodulators in an activity-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the Sox gene family of transcription factors are defined by the presence of an 80 amino acid homology domain, the High Mobility Group (HMG) box. Here we report the cloning and initial analysis of murine Sox-13 . The 984 amino acids Sox-13 protein contains a single HMG box, a leucine zipper motif and a glutamine-rich stretch. These characteristics are shared with another member of the Sox gene family, Sox-6. High level embryonic expression of Sox-13 occurs uniquely in the arterial walls of 13.5 days post coitum (dpc) mice and later. Low level expression was observed in the inner ear of 13.5 dpc mice and in a limited number of cells in the thymus of 16.5 dpc mice, from which Sox-13 was originally cloned. At 18.5 dpc, Sox-13 is expressed in the tracheal epithelium below the vocal cord and in the hair follicles. The Sox-13 protein binds to the consensus HMG box motif, AACAAAG, but does not transactivate transcription through a concatamer of this motif. Sox-13, like other members of the Sox family likely plays an important role in development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. Conclusion: We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease. (Hepatology 2014;59:423-433).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis. METHODOLOGY AND PRINCIPAL FINDINGS: MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei. CONCLUSIONS: MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients' outcomes. In experimental melioidosis MIF impaired antibacterial defense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The establishment of clonally variable expression of MHC class I-specific receptors by NK cells is not well understood. The Ly-49A receptor is used by approximately 20% of NK cells, whereby most cells express either the maternal or paternal allele and few express simultaneously both alleles. We have previously shown that NK cells expressing Ly-49A were reduced or almost absent in mice harboring a single or no functional allele of the transcription factor T cell factor-1 (TCF-1), respectively. In this study, we show that enforced expression of TCF-1 in transgenic mice yields an expanded Ly-49A subset. Even though the frequencies of Ly-49A(+) NK cells varied as a function of the TCF-1 dosage, the relative abundance of mono- and biallelic Ly-49A cells was maintained. Mono- and biallelic Ly-49A NK cells were also observed in mice expressing exclusively a transgenic TCF-1, i.e., expressing a fixed amount of TCF-1 in all NK cells. These findings suggest that Ly-49A acquisition is a stochastic event due to limiting TCF-1 availability, rather than the consequence of clonally variable expression of the endogenous TCF-1 locus. Efficient Ly-49A acquisition depended on the expression of a TCF-1 isoform, which included a domain known to associate with the TCF-1 coactivator beta-catenin. Indeed, the proximal Ly-49A promoter was beta-catenin responsive in reporter gene assays. We thus propose that Ly-49A receptor expression is induced from a single allele in occasional NK cells due to a limitation in the amount of a transcription factor complex requiring TCF-1.