868 resultados para FTIR spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the efficacy of endorectal Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spetroscopic Imaging (MRSI) combined with total prostate-specific antigen (tPSA) and free prostate-specific antigen (fPSA) in selecting candidates for biopsy. Subjects and Methods: 246 patients with elevated tPSA (median: 7.81 ng/ml) underwent endorectal MRI and MRSI before Transrectal Ultrasound (TRUS) biopsy (10 peripheral + 2 central cores); patients with positive biopsies were treated with radical intention; those with negative biopsies were followed up and underwent MRSI before each additional biopsy if tPSA rose persistently. Mean follow-up: 27.6 months. We compared MRI, MRSI, tPSA, and fPSA with histopathology by sextant and determined the association between the Gleason score and MRI and MRSI. We determined the most accurate combination to detect prostate cancer (PCa) using receiver operating curves; we estimated the odds ratios (OR) and calculated sensitivity, specificity, and positive and negative predictive values. Results: No difference in tPSA was found between patients with and without PCa (p = 0.551). In the peripheral zone, the risk of PCa increased with MRSI grade; patients with high-grade MRSI had the greatest risk of PCa over time (OR = 328.6); the model including MRI, MRSI, tPSA, and fPSA was more accurate (Area under Curve: AUC = 95.7%) than MRI alone (AUC = 85.1%) or fPSA alone (AUC = 78.1%), but not than MRSI alone (94.5%). In the transitional zone, the model was less accurate (AUC = 84.4%). The association (p = 0.005) between MRSI and Gleason score was significant in both zones. Conclusions: MRSI is useful in patients with elevated tPSA. High-grade MRSI lesions call for repeated biopsies. Men with negative MRSI may forgo further biopsies because a significantly high Gleason lesion is very unlikely

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy combined with chemometrics has recently become a widespread technique for the analysis of pharmaceutical solid forms. The application presented in this paper is the investigation of counterfeit medicines. This increasingly serious issue involves networks that are an integral part of industrialized organized crime. Efficient analytical tools are consequently required to fight against it. Quick and reliable authentication means are needed to allow the deployment of measures from the company and the authorities. For this purpose a method in two steps has been implemented here. The first step enables the identification of pharmaceutical tablets and capsules and the detection of their counterfeits. A nonlinear classification method, the Support Vector Machines (SVM), is computed together with a correlation with the database and the detection of Active Pharmaceutical Ingredient (API) peaks in the suspect product. If a counterfeit is detected, the second step allows its chemical profiling among former counterfeits in a forensic intelligence perspective. For this second step a classification based on Principal Component Analysis (PCA) and correlation distance measurements is applied to the Raman spectra of the counterfeits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR) spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R²) of 0.92, error of calibration (SEC) of 0.78, and error of performance (SEP) of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization. These items are addressed by using the"oligomer approach" in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of depressed neonatal cerebral oxidative phosphorylation for diagnosing the severity of perinatal asphyxia was estimated by correlating the concentrations of phosphocreatine (PCr) and ATP as determined by magnetic resonance spectroscopy with the degree of hypoxic-ischemic encephalopathy (HIE) in 23 asphyxiated term neonates. Ten healthy age-matched neonates served as controls. In patients, the mean concentrations +/- SD of PCr and ATP were 0.99 +/- 0.46 mmol/L (1.6 +/- 0.2 mmol/L) and 0.99 +/- 0.35 mmol/L (1.7 +/- 0.2 mmol/L), respectively (normal values in parentheses). [PCr] and [ATP] correlated significantly with the severity of HIE (r = 0.85 and 0.9, respectively, p < 0.001), indicating that the neonatal encephalopathy is the clinical manifestation of a marred brain energy metabolism. Neurodevelopmental outcome was evaluated in 21 children at 3, 9, and 18 mo. Seven infants had multiple impairments, five were moderately handicapped, five had only mild symptoms, and four were normal. There was a significant correlation between the cerebral concentrations of PCr or ATP at birth and outcome (r = 0.8, p < 0.001) and between the degree of neonatal neurologic depression and outcome (r = 0.7). More important, the outcome of neonates with moderate HIE could better be predicted with information from quantitative 31P magnetic resonance spectroscopy than from neurologic examinations. In general, the accuracy of outcome predictability could significantly be increased by adding results from 31P magnetic resonance spectroscopy to the neonatal neurologic score, but not vice versa. No correlation with outcome was found for other perinatal risk factors, including Apgar score.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A collaborative study on Raman spectroscopy and microspectrophotometry (MSP) was carried out by members of the ENFSI (European Network of Forensic Science Institutes) European Fibres Group (EFG) on different dyed cotton fabrics. The detection limits of the two methods were tested on two cotton sets with a dye concentration ranging from 0.5 to 0.005% (w/w). This survey shows that it is possible to detect the presence of dye in fibres with concentrations below that detectable by the traditional methods of light microscopy and microspectrophotometry (MSP). The MSP detection limit for the dyes used in this study was found to be a concentration of 0.5% (w/w). At this concentration, the fibres appear colourless with light microscopy. Raman spectroscopy clearly shows a higher potential to detect concentrations of dyes as low as 0.05% for the yellow dye RY145 and 0.005% for the blue dye RB221. This detection limit was found to depend both on the chemical composition of the dye itself and on the analytical conditions, particularly the laser wavelength. Furthermore, analysis of binary mixtures of dyes showed that while the minor dye was detected at 1.5% (w/w) (30% of the total dye concentration) using microspectrophotometry, it was detected at a level as low as 0.05% (w/w) (10% of the total dye concentration) using Raman spectroscopy. This work also highlights the importance of a flexible Raman instrument equipped with several lasers at different wavelengths for the analysis of dyed fibres. The operator and the set up of the analytical conditions are also of prime importance in order to obtain high quality spectra. Changing the laser wavelength is important to detect different dyes in a mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a lack of quick, simple and reliable methods for determination of nanoparticle size. An investigation of the size of hydrophobic (CdSe) and hydrophilic (CdSe/ZnS) quantum dots was performed by using the maximum position of the corresponding fluorescence spectrum. It has been found that fluorescence spectroscopy is a simple and reliable methodology to estimate the size of both quantum dot types. For a given solution, the homogeneity of the size of quantum dots is correlated to the relationship between the fluorescence maximum position (FMP) and the quantum dot size. This methodology can be extended to the other fluorescent nanoparticles. The employment of evolving factor analysis and multivariate curve resolution-alternating least squares for decomposition of the series of quantum dots fluorescence spectra recorded by a specific measuring procedure reveals the number of quantum dot fractions having different diameters. The size of the quantum dots in a particular group is defined by the FMP of the corresponding component in the decomposed spectrum. These results show that a combination of the fluorescence and appropriate statistical method for decomposition of the emission spectra of nanoparticles may be a quick and trusted method for the screening of the inhomogeneity of their solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain uses lactate produced by glycolysis as an energy source. How lactate originated from the blood stream is used to fuel brain metabolism is not clear. The current study measures brain metabolic fluxes and estimates the amount of pyruvate that becomes labeled in glial and neuronal compartments upon infusion of [3-(13) C]lactate. For that, labeling incorporation into carbons of glutamate and glutamine was measured by (13) C magnetic resonance spectroscopy at 14.1 T and analyzed with a two-compartment model of brain metabolism to estimate rates of mitochondrial oxidation, glial pyruvate carboxylation, and the glutamate-glutamine cycle as well as pyruvate fractional enrichments. Extracerebral lactate at supraphysiological levels contributes at least two-fold more to replenish the neuronal than the glial pyruvate pools. The rates of mitochondrial oxidation in neurons and glia, pyruvate carboxylase, and glutamate-glutamine cycles were similar to those estimated by administration of (13) C-enriched glucose, the main fuel of brain energy metabolism. These results are in agreement with primary utilization of exogenous lactate in neurons rather than astrocytes. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(13)C magnetic resonance spectroscopy (MRS) combined with the administration of (13)C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity (1)H-[(13)C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-(13)C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the (13)C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit (13)C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05 ± 0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48 ± 0.02 μmol/g per minute), the glutamate-glutamine exchange rate V(gln) (0.20 ± 0.02 μmol/g per minute), the pyruvate dilution factor K(dil) (0.82 ± 0.01), and the ratio for the lactate conversion rate and the alanine conversion rate V(Lac)/V(Ala) (10 ± 2). This study opens the prospect of studying transgenic mouse models of brain pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated fingermark residues using Fourier transform infrared microscopy (μ- FTIR) in order to obtain fundamental information about the marks' initial composition and aging kinetics. This knowledge would be an asset for fundamental research on fingermarks, such as for dating purposes. Attenuated Total Reflection (ATR) and single-point reflection modes were tested on fresh fingermarks. ATR proved to be better suited and this mode was subsequently selected for further aging studies. Eccrine and sebaceous material was found in fresh and aged fingermarks and the spectral regions 1000-1850 cm-1 and 2700-3600 cm-1 were identified as the most informative. The impact of substrates (aluminium and glass slides) and storage conditions (storage in the light and in the dark) on fingermark aging was also studied. Chemometric analyses showed that fingermarks could be grouped according to their age regardless of the substrate when they were stored in an open box kept in an air-conditioned laboratory at around 20°C next to a window. On the contrary, when fingermarks were stored in the dark, only specimens deposited on the same substrate could be grouped by age. Thus, the substrate appeared to influence aging of fingermarks in the dark. Furthermore, PLS regression analyses were conducted in order to study the possibility of modelling fingermark aging for potential fingermark dating applications. The resulting models showed an overall precision of ±3 days and clearly demonstrated their capability to differentiate older fingermarks (20 and 34-days old) from newer ones (1, 3, 7 and 9-days old) regardless of the substrate and lighting conditions. These results are promising from a fingermark dating perspective. Further research is required to fully validate such models and assess their robustness and limitations in uncontrolled casework conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The University of Barcelona is developing a pilot-scale hot wire chemical vapor deposition (HW-CVD) set up for the deposition of nano-crystalline silicon (nc-Si:H) on 10 cm × 10 cm glass substrate at high deposition rate. The system manages 12 thin wires of 0.15-0.2 mm diameter in a very dense configuration. This permits depositing very uniform films, with inhomogeneities lower than 2.5%, at high deposition rate (1.5-3 nm/s), and maintaining the substrate temperature relatively low (250 °C). The wire configuration design, based on radicals' diffusion simulation, is exposed and the predicted homogeneity is validated with optical transmission scanning measurements of the deposited samples. Different deposition series were carried out by varying the substrate temperature, the silane to hydrogen dilution and the deposition pressure. By means of Fourier transform infrared spectroscopy (FTIR), the evolution in time of the nc-Si:H vibrational modes was monitored. Particular importance has been given to the study of the material stability against post-deposition oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La spectroscopie infrarouge (FTIR) est une technique de choix dans l'analyse des peintures en spray (traces ou bonbonnes de référence), grâce à son fort pouvoir discriminant, sa sensibilité, et ses nombreuses possibilités d'échantillonnage. La comparaison des spectres obtenus est aujourd'hui principalement faite visuellement, mais cette procédure présente des limitations telles que la subjectivité de la prise de décision car celle-ci dépend de l'expérience et de la formation suivie par l'expert. De ce fait, de faibles différences d'intensités relatives entre deux pics peuvent être perçues différemment par des experts, même au sein d'un même laboratoire. Lorsqu'il s'agit de justifier ces différences, certains les expliqueront par la méthode analytique utilisée, alors que d'autres estimeront plutôt qu'il s'agit d'une variabilité intrinsèque à la peinture et/ou à son vécu (par exemple homogénéité, sprayage, ou dégradation). Ce travail propose d'étudier statistiquement les différentes sources de variabilité observables dans les spectres infrarouges, de les identifier, de les comprendre et tenter de les minimiser. Le deuxième objectif principal est de proposer une procédure de comparaison des spectres qui soit davantage transparente et permette d'obtenir des réponses reproductibles indépendamment des experts interrogés. La première partie du travail traite de l'optimisation de la mesure infrarouge et des principaux paramètres analytiques. Les conditions nécessaires afin d'obtenir des spectres reproductibles et minimisant la variation au sein d'un même échantillon (intra-variabilité) sont présentées. Par la suite une procédure de correction des spectres est proposée au moyen de prétraitements et de sélections de variables, afin de minimiser les erreurs systématiques et aléatoires restantes, et de maximiser l'information chimique pertinente. La seconde partie présente une étude de marché effectuée sur 74 bonbonnes de peintures en spray représentatives du marché suisse. Les capacités de discrimination de la méthode FTIR au niveau de la marque et du modèle sont évaluées au moyen d'une procédure visuelle, et comparées à diverses procédures statistiques. Les limites inférieures de discrimination sont testées sur des peintures de marques et modèles identiques mais provenant de différents lots de production. Les résultats ont montré que la composition en pigments était particulièrement discriminante, à cause des étapes de corrections et d'ajustement de la couleur subies lors de la production. Les particularités associées aux peintures en spray présentes sous forme de traces (graffitis, gouttelettes) ont également été testées. Trois éléments sont mis en évidence et leur influence sur le spectre infrarouge résultant testée : 1) le temps minimum de secouage nécessaire afin d'obtenir une homogénéité suffisante de la peinture et, en conséquence, de la surface peinte, 2) la dégradation initiée par le rayonnement ultra- violet en extérieur, et 3) la contamination provenant du support lors du prélèvement. Finalement une étude de population a été réalisée sur 35 graffitis de la région lausannoise et les résultats comparés à l'étude de marché des bonbonnes en spray. La dernière partie de ce travail s'est concentrée sur l'étape de prise de décision lors de la comparaison de spectres deux-à-deux, en essayant premièrement de comprendre la pratique actuelle au sein des laboratoires au moyen d'un questionnaire, puis de proposer une méthode statistique de comparaison permettant d'améliorer l'objectivité et la transparence lors de la prise de décision. Une méthode de comparaison basée sur la corrélation entre les spectres est proposée, et ensuite combinée à une évaluation Bayesienne de l'élément de preuve au niveau de la source et au niveau de l'activité. Finalement des exemples pratiques sont présentés et la méthodologie est discutée afin de définir le rôle précis de l'expert et des statistiques dans la procédure globale d'analyse des peintures. -- Infrared spectroscopy (FTIR) is a technique of choice for analyzing spray paint speciments (i.e. traces) and reference samples (i.e. cans seized from suspects) due to its high discriminating power, sensitivity and sampling possibilities. The comparison of the spectra is currently carried out visually, but this procedure has limitations such as the subjectivity in the decision due to its dependency on the experience and training of the expert. This implies that small differences in the relative intensity of two peaks can be perceived differently by experts, even between analysts working in the same laboratory. When it comes to justifying these differences, some will explain them by the analytical technique, while others will estimate that the observed differences are mostly due to an intrinsic variability from the paint sample and/or its acquired characteristics (for example homogeneity, spraying, or degradation). This work proposes to statistically study the different sources of variability observed in infrared spectra, to identify them, understand them and try to minimize them. The second goal is to propose a procedure for spectra comparison that is more transparent, and allows obtaining reproducible answers being independent from the expert. The first part of the manuscript focuses on the optimization of infrared measurement and on the main analytical parameters. The necessary conditions to obtain reproducible spectra with a minimized variation within a sample (intra-variability) are presented. Following that a procedure of spectral correction is then proposed using pretreatments and variable selection methods, in order to minimize systematic and random errors, and increase simultaneously relevant chemical information. The second part presents a market study of 74 spray paints representative of the Swiss market. The discrimination capabilities of FTIR at the brand and model level are evaluated by means of visual and statistical procedures. The inferior limits of discrimination are tested on paints coming from the same brand and model, but from different production batches. The results showed that the pigment composition was particularly discriminatory, because of the corrections and adjustments made to the paint color during its manufacturing process. The features associated with spray paint traces (graffitis, droplets) were also tested. Three elements were identified and their influence on the resulting infrared spectra were tested: 1) the minimum shaking time necessary to obtain a sufficient homogeneity of the paint and subsequently of the painted surface, 2) the degradation initiated by ultraviolet radiation in an exterior environment, and 3) the contamination from the support when paint is recovered. Finally a population study was performed on 35 graffitis coming from the city of Lausanne and surroundings areas, and the results were compared to the previous market study of spray cans. The last part concentrated on the decision process during the pairwise comparison of spectra. First, an understanding of the actual practice among laboratories was initiated by submitting a questionnaire. Then, a proposition for a statistical method of comparison was advanced to improve the objectivity and transparency during the decision process. A method of comparison based on the correlation between spectra is proposed, followed by the integration into a Bayesian framework at both source and activity levels. Finally, some case examples are presented and the recommended methodology is discussed in order to define the role of the expert as well as the contribution of the tested statistical approach within a global analytical sequence for paint examinations.