998 resultados para FREE COMMUTATIVE AUTOMORPHIC LOOP
Resumo:
RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.
Resumo:
Exchange-biased Ni/FeF2 films have been investigated using vector coil vibrating-sample magnetometry as a function of the cooling field strength HFC . In films with epitaxial FeF2 , a loop bifurcation develops with increasing HFC as it divides into two sub-loops shifted oppositely from zero field by the same amount. The positively biased sub-loop grows in size with HFC until only a single positively shifted loop is found. Throughout this process, the negative and positive (sub)loop shifts maintain the same discrete value. This is in sharp contrast to films with twinned FeF2 where the exchange field gradually changes with increasing HFC . The transverse magnetization shows clear correlations with the longitudinal subloops. Interestingly, over 85% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are due to the single-crystal nature of the antiferromagnetic FeF2 , which breaks down into two opposite regions of large domains.
Resumo:
Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.
Resumo:
We develop a method to obtain first-passage-time statistics for non-Markovian processes driven by dichotomous fluctuations. The fluctuations themselves need not be Markovian. We calculate analytic first-passage-time distributions and mean first-passage times for exponential, rectangular, and long-tail temporal distributions of the fluctuations.
Resumo:
We show that the solution published in the paper by Senovilla [Phys. Rev. Lett. 64, 2219 (1990)] is geodesically complete and singularity-free. We also prove that the solution satisfies the stronger energy and causality conditions, such as global hyperbolicity, the strong energy condition, causal symmetry, and causal stability. A detailed discussion about which assumptions in the singularity theorems are not satisfied is performed, and we show explicitly that the solution is in accordance with those theorems. A brief discussion of the results is given.
Resumo:
Random scale-free networks have the peculiar property of being prone to the spreading of infections. Here we provide for the susceptible-infected-susceptible model an exact result showing that a scale-free degree distribution with diverging second moment is a sufficient condition to have null epidemic threshold in unstructured networks with either assortative or disassortative mixing. Degree correlations result therefore irrelevant for the epidemic spreading picture in these scale-free networks. The present result is related to the divergence of the average nearest neighbors degree, enforced by the degree detailed balance condition.
Resumo:
The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in. In this regime the diffusion may be greatly enhanced, as compared to free thermal diffusion with, for a realistic experimental setup, an enhancement of up to 14 orders of magnitude.
Resumo:
PURPOSE: To describe methods and outcomes of excisional revision of a filtering bleb (bleb revision) using free conjunctival autologous graft either for bleb repair or for bleb reduction after trabeculectomy and deep sclerectomy with an implant. METHODS: Retrospective medical records were reviewed for a consecutive non-comparative case series comprising patients who underwent excisional revision of a filtering bleb between May 1998-January 2001. Excisional revision using free conjunctival autologous graft (bleb revision) was performed either for bleb repair, to treat early and late leaks and hypotony with maculopathy, or for bleb reduction, to improve ocular pain, discomfort, burning, foreign body sensation, tearing, and fluctuations of visual acuity. The revision consisted of bleb excision and free conjunctival autologous graft. The bleb histopathology was analyzed in patients who underwent bleb repair. RESULTS: Sixteen patients were included in the study, consisting of nine patients who had a trabeculectomy and seven patients who had a deep sclerectomy with an implant. Bleb revision was necessary in 14 patients due to leaking filtering bleb (bleb repair), and in 2 patients due to bleb dysesthesia (bleb reduction). After a follow-up of 15.1 +/- 8.4 months, the mean intraocular pressure (IOP) rose from 7.8 +/- 6.3 mm Hg to 14.3 +/- 6.5 mm Hg, and the visual acuity from 0.4 +/- 0.3 to 0.7 +/- 0.3, with a P value of 0.008 and 0.03, respectively. The complete success rate at 32 months, according to the Kaplan-Meier survival curve, was 38.3%, and the qualified success rate was 83.3%. Four patients (25%) required additional suturing for persistent bleb leak. To control IOP, antiglaucoma medical therapy was needed for six patients (37.5%) and repeated glaucoma surgery was needed for one patient. CONCLUSION: Free conjunctival autologous graft is a safe and successful procedure for bleb repair and bleb reduction. However, patients should be aware of the postoperative possibility of requiring medical or surgical intervention for IOP control after revision.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Resumo:
We study the motion of an unbound particle under the influence of a random force modeled as Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint and marginal probability density functions and find the associated solutions. We analyze in detail anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and explore possible connections between dynamical exponents of the variance and the fractal dimension of the trajectories.
Resumo:
The mission of the Iowa Civil Rights Commission is to end discrimination within the state of Iowa. To achieve this goal, the ICRC must effectively enforce the Iowa Civil Rights Act. The ICRA will be as effective as the Commission is in processing complaints of discrimination. The ICRC undertook significant steps forward in improving the timeliness and competency by which complaints of discrimination are processed. The screening unit was increased with special emphasis on improving the quality and quantity of the analysis of the initial screening decisions. The investigative process for nonhousing cases was completely overhauled. The improved process builds on the screening decision and focuses on the issues raised in that decision. The new process will help the ICRC reduce a significant backlog for non-housing cases. Additionally, we revamped the mediation program by moving to an allvolunteer mediation program. Over 20 Iowa lawyers volunteered to help the ICRC resolve complaints through alternative dispute resolution.
Resumo:
Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree k, respectively.