899 resultados para Expressed Emotion
Resumo:
Apolipoprotein E (apoE) is associated with several classes of plasma lipoproteins and mediates uptake of lipoproteins through its ability to interact with specific cell surface receptors. Besides its role in cardiovascular diseases, accumulating evidence has suggested that apoE could play a role in neurodegenerative diseases, such as Alzheimer disease. In vertebrates, apoA-I is the major protein of high-density lipoprotein. ApoA-I may play an important role in regulating the cholesterol content of peripheral tissues through the reverse cholesterol transport pathway. We have isolated cDNA clones that code for apoE and apoA-I from a zebrafish embryo library. Analysis of the deduced amino acid sequences showed the presence of a region enriched in basic amino acids in zebrafish apoE similar to the lipoprotein receptor-binding region of human apoE. We demonstrated by whole-mount in situ hybridization that apoE and apoA-I genes are highly expressed in the yolk syncytial layer, an extraembryonic structure implicated in embryonic and larval nutrition. ApoE transcripts were also observed in the deep cell layer during blastula stage, in numerous ectodermal derivatives after gastrulation, and after 3 days of development in a limited number of cells both in brain and in the eyes. Our data indicate that apoE can be found in a nonmammalian vertebrate and that the duplication events, from which apoE and apoA-I genes arose, occurred before the divergence of the tetrapod and teleost ancestors. Zebrafish can be used as a simple and useful model for studying the role of apolipoproteins in embryonic and larval nutrition and of apoE in brain morphogenesis and regeneration.
Resumo:
During activation T cells are thought to change their patterns of gene expression dramatically. To find out whether this is true for T cells activated in animals, the patterns of genes expressed in resting T cells and T cells 8 and 48 hr after activation were examined by using Affymetrix gene arrays. Gene arrays gave accurate comparisons of gene expression in the different cell types because the expression of genes known to vary during activation changed as expected. Of the approximately 6,300 genes assessed by the arrays, about one-third were expressed to appreciable extents in any of the T cells tested. Thus, resting T cells express a surprisingly large diversity of genes. The patterns of gene expression changed considerably within 8 hr of T cell activation but returned to a disposition more like that of resting T cells within 48 hr of exposure to antigen. Not unexpectedly, the activated T cells expressed genes associated with cell division at higher levels than resting T cells. The resting T cells expressed a number of cytokine receptor genes and some genes thought to suppress cell division, suggesting that the state of resting T cells is not a passive failure to respond to extant external stimuli.
Resumo:
A systematic screen termed the allelic message display (AMD) was developed for the hunting of imprinted genes. In AMD, differential display PCR is adopted to image allelic expression status of multiple polymorphic transcripts in two parental mouse strains, reciprocal F1 hybrids and pooled backcross progenies. From the displayed patterns, paternally and maternally expressed transcripts can be unequivocally identified. The effectiveness of AMD screening was clearly demonstrated by the identification of a paternally expressed gene Impact on mouse chromosome 18, the predicted product of which belongs to the YCR59c/yigZ hypothetical protein family composed of yeast and bacterial proteins with currently unknown function. In contrast with previous screening methods necessitating positional cloning efforts or generation of parthenogenetic embryos, this approach requires nothing particular but appropriately crossed mice and can be readily applied to any tissues at various developmental stages. Hence, AMD would considerably accelerate the identification of imprinted genes playing pivotal roles in mammalian development and the pathogenesis of various diseases.
Resumo:
The major gibberellin (GA) controlling stem elongation in pea (Pisum sativum L.) is GA1, which is formed from GA20 by 3β-hydroxylation. This step, which limits GA1 biosynthesis in pea, is controlled by the Le locus, one of the original Mendelian loci. Mutations in this locus result in dwarfism. We have isolated cDNAs encoding a GA 3β-hydroxylase from lines of pea carrying the Le, le, le-3, and led alleles. The cDNA sequences from le and le-3 each contain a base substitution resulting in single amino acid changes relative to the sequence from Le. The cDNA sequence from led, a mutant derived from an le line, contains both the le “mutation” and a single-base deletion, which causes a shift in reading frame and presumably a null mutation. cDNAs from each line were expressed in Escherichia coli. The expression product for the clone from Le converted GA9 to GA4, and GA20 to GA1, with Km values of 1.5 μM and 13 μM, respectively. The amino acid substitution in the clone from le increased Km for GA9 100-fold and reduced conversion of GA20 to almost nil. Expression products from le and le-3 possessed similar levels of 3β-hydroxylase activity, and the expression product from led was inactive. Our results suggest that the 3β-hydroxylase cDNA is encoded by Le. Le transcript is expressed in roots, shoots, and cotyledons of germinating pea seedlings, in internodes and leaves of established seedlings, and in developing seeds.
Resumo:
Thyroid hormone plays an essential role in mammalian brain maturation and function, in large part by regulating the expression of specific neuronal genes. In this tissue, the type 2 deiodinase (D2) appears to be essential for providing adequate levels of the active thyroid hormone 3,5,3′-triiodothyronine (T3) during the developmental period. We have studied the regional and cellular localization of D2 mRNA in the brain of 15-day-old neonatal rats. D2 is expressed in the cerebral cortex, olfactory bulb, hippocampus, caudate, thalamus, hypothalamus, and cerebellum and was absent from the white matter. At the cellular level, D2 is expressed predominantly, if not exclusively, in astrocytes and in the tanycytes lining the third ventricle and present in the median eminence. These results suggest a close metabolic coupling between subsets of glial cells and neurons, whereby thyroxine is taken up from the blood and/or cerebrospinal fluid by astrocytes and tanycytes, is deiodinated to T3, and then is released for utilization by neurons.
Resumo:
Stimulation of antitumor immune mechanisms is the primary goal of cancer immunotherapy, and accumulating evidence suggests that effective alteration of the host–tumor relationship involves immunomodulating cytokines and also the presence of costimulatory molecules. To examine the antitumor effect of direct in vivo gene transfer of murine interleukin 12 (IL-12) and B7-1 into tumors, we developed an adenovirus (Ad) vector, AdIL12–B7-1, that encodes the two IL-12 subunits in early region 1 (E1) and the B7-1 gene in E3 under control of the murine cytomegalovirus promoter. This vector expressed high levels of IL-12 and B7-1 in infected murine and human cell lines and in primary murine tumor cells. In mice bearing tumors derived from a transgenic mouse mammary adenocarcinoma, a single intratumoral injection with a low dose (2.5 × 107 pfu/mouse) of AdIL12–B7-1 mediated complete regression in 70% of treated animals. By contrast, administration of a similar dose of recombinant virus encoding IL-12 or B7-1 alone resulted in only a delay in tumor growth. Interestingly, coinjection of two different viruses expressing either IL-12 or B7-1 induced complete tumor regression in only 30% of animals treated at this dose. Significantly, cured animals remained tumor free after rechallenge with fresh tumor cells, suggesting that protective immunity had been induced by treatment with AdIL12–B7-1. These results support the use of Ad vectors as a highly efficient delivery system for synergistically acting molecules and show that the combination of IL-12 and B7-1 within a single Ad vector might be a promising approach for in vivo cancer therapy.
Resumo:
Vertebrate limb tendons are derived from connective cells of the lateral plate mesoderm. Some of the developmental steps leading to the formation of vertebrate limb tendons have been previously identified; however, the molecular mechanisms responsible for tendinous patterning and maintenance during embryogenesis are largely unknown. The eyes absent (eya) gene of Drosophila encodes a novel nuclear protein of unknown molecular function. Here we show that Eya1 and Eya2, two mouse homologues of Drosophila eya, are expressed initially during limb development in connective tissue precursor cells. Later in limb development, Eya1 and Eya2 expression is associated with cell condensations that form different sets of limb tendons. Eya1 expression is largely restricted to flexor tendons, while Eya2 is expressed in the extensor tendons and ligaments of the phalangeal elements of the limb. These data suggest that Eya genes participate in the patterning of the distal tendons of the limb. To investigate the molecular functions of the Eya gene products, we have analyzed whether the highly divergent PST (proline-serine-threonine)-rich N-terminal regions of Eya1–3 function as transactivation domains. Our results demonstrate that Eya gene products can act as transcriptional activators, and they support a role for this molecular function in connective tissue patterning.
Resumo:
Understanding the effects of the external environment on bacterial gene expression can provide valuable insights into an array of cellular mechanisms including pathogenesis, drug resistance, and, in the case of Mycobacterium tuberculosis, latency. Because of the absence of poly(A)+ mRNA in prokaryotic organisms, studies of differential gene expression currently must be performed either with large amounts of total RNA or rely on amplification techniques that can alter the proportional representation of individual mRNA sequences. We have developed an approach to study differences in bacterial mRNA expression that enables amplification by the PCR of a complex mixture of cDNA sequences in a reproducible manner that obviates the confounding effects of selected highly expressed sequences, e.g., ribosomal RNA. Differential expression using customized amplification libraries (DECAL) uses a library of amplifiable genomic sequences to convert total cellular RNA into an amplified probe for gene expression screens. DECAL can detect 4-fold differences in the mRNA levels of rare sequences and can be performed on as little as 10 ng of total RNA. DECAL was used to investigate the in vitro effect of the antibiotic isoniazid on M. tuberculosis, and three previously uncharacterized isoniazid-induced genes, iniA, iniB, and iniC, were identified. The iniB gene has homology to cell wall proteins, and iniA contains a phosphopantetheine attachment site motif suggestive of an acyl carrier protein. The iniA gene is also induced by the antibiotic ethambutol, an agent that inhibits cell wall biosynthesis by a mechanism that is distinct from isoniazid. The DECAL method offers a powerful new tool for the study of differential gene expression.
Resumo:
A rapidly growing area of genome research is the generation of expressed sequence tags (ESTs) in which large numbers of randomly selected cDNA clones are partially sequenced. The collection of ESTs reflects the level and complexity of gene expression in the sampled tissue. To date, the majority of plant ESTs are from nonwoody plants such as Arabidopsis, Brassica, maize, and rice. Here, we present a large-scale production of ESTs from the wood-forming tissues of two poplars, Populus tremula L. × tremuloides Michx. and Populus trichocarpa ‘Trichobel.’ The 5,692 ESTs analyzed represented a total of 3,719 unique transcripts for the two cDNA libraries. Putative functions could be assigned to 2,245 of these transcripts that corresponded to 820 protein functions. Of specific interest to forest biotechnology are the 4% of ESTs involved in various processes of cell wall formation, such as lignin and cellulose synthesis, 5% similar to developmental regulators and members of known signal transduction pathways, and 2% involved in hormone biosynthesis. An additional 12% of the ESTs showed no significant similarity to any other DNA or protein sequences in existing databases. The absence of these sequences from public databases may indicate a specific role for these proteins in wood formation. The cDNA libraries and the accompanying database are valuable resources for forest research directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.
Resumo:
Xenopus laevis oocytes have been used extensively during the past decade to express and study neurotransmitter receptors of various origins and subunit composition and also to express and study receptors altered by site-specific mutations. Interpretations of the effects of structural differences on receptor mechanisms were, however, hampered by a lack of rapid chemical reaction techniques suitable for use with oocytes. Here we describe flow and photolysis techniques, with 2-ms and 100-μs time resolution, respectively, for studying neurotransmitter receptors in giant (≈20-μm diameter) patches of oocyte membranes, using muscle and neuronal acetylcholine receptors as examples. With these techniques, we find that the muscle receptor in BC3H1 cells and the same receptor expressed in oocytes have comparable kinetic properties. This finding is in contrast to previous studies and raises questions regarding the interpretations of the many studies of receptors expressed in oocytes in which an insufficient time resolution was available. The results obtained indicate that the rapid reaction techniques described here, in conjunction with the oocyte expression system, will be useful in answering many outstanding questions regarding the structure and function of diverse neurotransmitter receptors.
Resumo:
The alcohol dehydrogenase (Adh) gene family is much more complex in Pinus banksiana than in angiosperms, with at least seven expressed genes organized as two tightly linked clusters. Intron number and position are highly conserved between P. banksiana and angiosperms. Unlike angiosperm Adh genes, numerous duplications, as large as 217 bp, were observed within the noncoding regions of P. banksiana Adh genes and may be a common feature of conifer genes. A high frequency of duplication over a wide range of scales may contribute to the large genome size of conifers.
Resumo:
The isolation and study of Anopheles gambiae genes that are differentially expressed in development, notably in tissues associated with the maturation and transmission of the malaria parasite, is important for the elucidation of basic molecular mechanisms underlying vector–parasite interactions. We have used the differential display technique to screen for mRNAs specifically expressed in adult males, females, and midgut tissues of blood-fed and unfed females. We also screened for mRNAs specifically induced upon bacterial infection of larval stage mosquitoes. We have characterized 19 distinct cDNAs, most of which show developmentally regulated expression specificity during the mosquito life cycle. The most interesting are six new sequences that are midgut-specific in the adult, three of which are also modulated by blood-feeding. The gut-specific sequences encode a maltase, a V-ATPase subunit, a GTP binding protein, two different lectins, and a nontrypsin serine protease. The latter sequence is also induced in larvae subjected to bacterial challenge. With the exception of a mitochondrial DNA fragment, the other 18 sequences constitute expressed genomic sequence tags, 4 of which have been mapped cytogenetically.
Resumo:
An mRNA differential display comparison of mouse JB6 promotion-sensitive (P+) and -resistant (P−) cells identified a novel gene product that inhibits neoplastic transformation. The JB6 P+ and P− cells are genetic variants that differ in their transformation response to tumor promoters; P+ cells form anchorage-independent colonies that are tumorigenic, and P− cells do not. A differentially displayed fragment, A7-1, was preferentially expressed in P− cells at levels ≥10-fold those in P+ cells, making its mRNA a candidate inhibitor of neoplastic transformation. An A7-1 cDNA was isolated that was identical to murine Pdcd4 gene cDNAs, also known as MA-3 or TIS, and analogous to human H731 and 197/15a. Until now, the function of the Pdcd4 protein has been unknown. Paralleling the mRNA levels, Pdcd4 protein levels were greater in P− than in P+ cells. Pdcd4 mRNA was also expressed at greater levels in the less progressed keratinocytes of another mouse skin neoplastic progression series. To test the hypothesis that Pdcd4 inhibits tumor promoter-induced transformation, stable cell lines expressing antisense Pdcd4 were generated from parental P− cells. The reduction of Pdcd4 proteins in antisense lines was accompanied by acquisition of a transformation-sensitive (P+) phenotype. The antisense-transfected cells were reverted to their initial P− phenotype by overexpression of a Pdcd4 sense fragment. These observations demonstrate that the Pdcd4 protein inhibits neoplastic transformation.
Resumo:
The pregnancy-associated glycoproteins (PAGs) are structurally related to the pepsins, thought to be restricted to the hooved (ungulate) mammals and characterized by being expressed specifically in the outer epithelial cell layer (chorion/trophectoderm) of the placenta. At least some PAGs are catalytically inactive as proteinases, although each appears to possess a cleft capable of binding peptides. By cloning expressed genes from ovine and bovine placental cDNA libraries, by Southern genomic blotting, by screening genomic libraries, and by using PCR to amplify portions of PAG genes from genomic DNA, we estimate that cattle, sheep, and most probably all ruminant Artiodactyla possess many, possibly 100 or more, PAG genes, many of which are placentally expressed. The PAGs are highly diverse in sequence, with regions of hypervariability confined largely to surface-exposed loops. Nonsynonymous (replacement) mutations in the regions of the genes coding for these hypervariable loop segments have accumulated at a higher rate than synonymous (silent) mutations. Construction of distance phylograms, based on comparisons of PAG and related aspartic proteinase amino acid sequences, suggests that much diversification of the PAG genes occurred after the divergence of the Artiodactyla and Perissodactyla, but that at least one gene is represented outside the hooved species. The results also suggest that positive selection of duplicated genes has acted to provide considerable functional diversity among the PAGs, whose presence at the interface between the placenta and endometrium and in the maternal circulation indicates involvement in fetal–maternal interactions.
Resumo:
Large-scale genetic screens for mutations affecting early neurogenesis of vertebrates have recently been performed with an aquarium fish, the zebrafish. Later stages of neural morphogenesis have attracted less attention in small fish species, partly because of the lack of molecular markers of developing structures that may facilitate the detection of discrete structural alterations. In this context, we report the characterization of Ol-Prx 3 (Oryzias latipes-Prx 3). This gene was isolated in the course of a large-scale screen for brain cDNAs containing a highly conserved DNA binding region, the homeobox helix-three. Sequence analysis revealed that this gene belongs to another class of homeobox genes, together with a previously isolated mouse ortholog, called OG-12 [Rovescalli, A. C., Asoh, S. & Nirenberg, M. (1996) Proc. Natl. Acad. Sci. USA 93, 10691–10696] and with the human SHOX gene [Rao, E., Weiss, B., Fukami, M., Rump, A., Niesler, B., et al. (1997) Nat. Genet. 16, 54–62], thought to be involved in the short-stature phenotype of Turner syndrome patients. These three genes exhibit a moderate level of identity in the homeobox with the other genes of the paired-related (PRX) gene family. Ol-Prx 3, as well as the PRX genes, are expressed in various cartilaginous structures of head and limbs. These genes might thus be involved in common regulatory pathways during the morphogenesis of these structures. Moreover, this paper reports a complex and monophasic pattern of Ol-Prx 3 expression in the central nervous system, which differs markedly from the patterns reported for the PRX genes, Prx 3 excluded: this gene begins to be expressed in a variety of central nervous system territories at late neurula stage. Strikingly, it remains turned on in some of the derivatives of each territory during the entire life of the fish. We hope this work will thus help identify common features for the PRX 3 family of homeobox genes.