901 resultados para Explicit finite element model
Resumo:
Rautaruukki Oyj:n uusi Ruukki double grade S420MH/S355J2H -rakenneputki yhdistää putkilajien S420MH ja S355J2H ominaisuudet. Eurocode 3:n suunnitteluohjeiden mukaan Ruukki double graden käyttöön on sovellettava lujuusluokan S420 mukaista hitsien mitoitusta ja rakenneputkiliitosten staattista mitoituskestävyyttä alentavaa varmuuskerrointa, kun halutaan hyödyntää lujuusluokan S420 ominaisuudet Ruukki double gradea käytettäessä. Tässä työssä tutkittiin S420-lujuusluokkaa vastaavien suunnittelumääräysten soveltamistarvetta Ruukki double grade -rakenneputken käyttöön. Työn tavoitteena oli arvioida Ruukki double grade -rakenneputkesta hitsaamalla valmistetun X-liitoksen kestävyyden ja muodonmuutoskyvyn riittävyys, kun hitsit mitoitettiin S355-lujuusluokkaa vastaavien Eurocode 3:n suunnitteluohjeiden mukaisesti. X-liitosten kestävyyttä ja muodonmuutoskykyä tutkittiin kokeellisesti -40 C lämpötilassa suoritettujen laboratoriokokeiden avulla sekä analyyttisen laskennan ja elementtimenetelmän keinoin. Kestävyyden riittävyyttä arvioitiin vertaamalla laboratoriokokeista saatuja liitosten kestävyyksiä Eurocode 3:n ja myötöviivateorian mukaisiin kestävyyksiin. Elementtimenetelmän ja laboratoriokokeen pohjalta piirrettyjä liitoksen voima-siirtymäkuvaajia vertailtiin keskenään, kun elementtimalli analysoitiin eri materiaalimalleilla. Lisäksi verrattiin elementtimallin voima-venymäkuvaajia liitoksen venymäliuskan arvoihin. Kaikki koesarjan S355-lujuusluokan mukaisilla hitsin a-mitoilla valmistetut liitokset täyttivät kestävyydelle ja muodonmuutoskyvylle asetetut vaatimukset. Täten tämän koesarjan perusteella ei ollut tarpeellista soveltaa S420-lujuusluokan mukaista hitsien mitoitusta ja staattista mitoituskestävyyttä alentavaa varmuuslukua Ruukki double grade -rakenneputkeen. Elementtimenetelmästä ja laboratoriokokeesta saadut liitoksen voima-siirtymäkuvaajat vastasivat hyvin toisiaan. Sen sijaan elementtimallin voima-venymä-kuvaajat eivät vastanneet venymäliuskojen mittausdataa kovin hyvin.
Resumo:
Modern machine structures are often fabricated by welding. From a fatigue point of view, the structural details and especially, the welded details are the most prone to fatigue damage and failure. Design against fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyzing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every structural detail within a single finite element model can be overwhelming since the amount of nodal degrees of freedom needed in the model may require an impractical amount of computational effort. The purpose of computer simulation is to reduce amount of prototypes and speed up the product development process. Also, to take operator influence into account, real time models, i.e. simplified and computationally efficient models are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic simulation. The research looks back at the theoretical background of multibody dynamic simulation and finite element method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that, the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination of floating frame of reference formulation with modal superposition and a sub-modeling approach. In practice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history for a structural detail during or after dynamic simulation. In this work numerical examples are presented to demonstrate the proposed approach in practice. The results show that approach is applicable and can be used as proposed.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
Työn tavoitteena oli selvittää kaupallisen dynamiikansimulointiohjelmiston so-veltuvuus roottoridynamiikan analysointiin. Työssä keskityttiin erityisesti rootto-rin dynamiikkaan vaikuttavien epäideaalisuuksien mallintamiseen. Simulointitu-losten tarkkuutta selvitettiin mittauksilla. Lisäksi vertailtiin yleiskäyttöisen dyna-miikan simulointiohjelmiston ja roottoridynamiikan erikoisohjelmiston teoriaa. Tutkittava roottori oli paperikoneen putkitela. Telan joustavuus kuvattiin ele-menttimenetelmällä ratkaistujen moodien avulla. Elementtimallissa huomioitiin telan vaipan seinämänpaksuusvaihtelu, joka vaikuttaa telan massa- ja jäykkyysja-kaumaan. Dynamiikkaohjelmistossa mallinnettiin telan tuennasta tulevat herätteet. Dynamiikkaohjelmistona käytettiin ADAMS:ia ja FEM-ohjelmana ANSYS:stä. Tuloksista havaittiin käytetyn menetelmän soveltuvan roottoridynamiikan ana-lysointiin ja roottorin epäideaalisuuksien mallintamiseen. Simulointimallilla saa-tiin esille murtolukukriittiset pyörimisnopeudet ja telan kriittinen pyörimisnopeus vastasi hyvin mittaustuloksia.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.
Resumo:
Työkoneen vanteen kantavuuslaskentaan käytettävän taulukon epäiltiin tuottavan todellista huonompia kantavuuksia etenkin suurten offset-arvon vanteiden tapauksessa. Tutkimuksessa yhdestä tyypillistä kokoa edustavasta vannetyypistä valmistettiin offset-säädettävä erikoisvanne. Vanteen käytön aikaisia rasituksia seurattiin venymäliuska-antureilla koeajoradalla tavanomaisissa ajotilanteissa eri offset-arvoilla traktorilla vedettävän kuormitetun testivaunun avulla. Saatuja tuloksia vertailtiin vanteen elementtimallin tuloksiin ja käytettyjä kuormitusolettamia muutettiin. Tutkimuksen tuloksena kantavuuden laskentaan käytettävän taulukon todettiin toimivan pääosin mittauksen mukaisesti. Vanteen offset-arvolla on laskentataulukon mukaisesti merkittävä vaikutus vanteen keskiön väsymiskestävyyteen. Suurilla negatiivisilla offset-arvoilla vanteen kestoiän määrä ajo taisella alustalla, kun taas suurten positiivisten vanteiden väsymisvaurio aiheutuu pääosin kaltevalla pinnalla ajosta. Mittauksella pystyttiin osoittamaan laskentataulukon konservatiivinen olettama etenkin suurten negatiivisten offset-arvojen vanteille, jolla kyseenomaisten vanteiden väsymiskestoikää voidaan parantaa merkittävästi. Lisäksi laskentaohjelman tekemisessä käytettyjen kuormitus- ja reunaehto-olettamien vahvistettiin toimivan keskiön kannalta riittävällä tarkkuudella. Havainnolla on tärkeä rooli tulevissa elementtimenetelmään perustuvissa kantavuuslaskelmissa.
Resumo:
Ce travail de thèse porte sur la simulation du déploiement des prothèses vasculaires de type stent-graft (SG) lors de la réparation endovasculaire (EVAR) des anévrismes de l’aorte abdominale (AAA). Cette étude se présente en trois parties: (i) tests mécaniques en flexion et compression de SG couramment utilisés (corps et jambage de marque Cook) ainsi que la simulation numérique desdits tests, (ii) développement d’un modèle numérique d’anévrisme, (iii) stratégie de simulation du déploiement des SG. La méthode numérique employée est celle des éléments finis. Dans un premier temps, une vérification du modèle éléments finis (MEF) des SG est realisée par comparaison des différents cas de charge avec leur pendant expérimental. Ensuite, le MEF vasculaire (AAA) est lui aussi vérifié lors d’une comparaison des niveaux de contraintes maximales principales dans la paroi avec des valeurs de la littérature. Enfin, le déploiement est abordé tout en intégrant les cathéters. Les tests mécaniques menés sur les SG ont été simulés avec une différence maximale de 5,93%, tout en tenant compte de la pré-charge des stents. Le MEF de la structure vasculaire a montré des contraintes maximales principales éloignées de 4,41% par rapport à un modèle similaire précédemment publié. Quant à la simulation du déploiement, un jeu complet de SG a pu être déployé avec un bon contrôle de la position relative et globale, dans un AAA spécifique pré-déformé, sans toutefois inclure de thrombus intra-luminal (TIL). La paroi du AAA a été modélisée avec une loi de comportement isotropique hyperélastique. Étant donné que la différence maximale tolérée en milieu clinique entre réalité et simulation est de 5%, notre approche semble acceptable et pourrait donner suite à de futurs développements. Cela dit, le petit nombre de SG testés justifie pleinement une vaste campagne de tests mécaniques et simulations supplémentaires à des fins de validation.
Resumo:
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, Digital Surface Models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub-metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. The paper describes the development of a LiDAR post-processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post-processing produces a Digital Terrain Model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially-distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR-derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a 2D finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features such as buildings and roads as well as taller vegetation features such as trees and hedges. This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features.
Resumo:
Samples of Norway spruce wood were impregnated with a water-soluble melamine formaldehyde resin by using short-term vacuum treatment and long-term immersion, respectively. By means of Fourier transform infrared (FTIR) spectroscopy and UV microspectrophotometry, it was shown that only diffusion during long-term immersion leads to sufficient penetration of melamine resin into the wood structure, the flow of liquids in Norway spruce wood during vacuum treatment being greatly hindered by aspirated pits. After an immersion in aqueous melamine resin solution for 3 days, the resin had penetrated to a depth > 4 mm, which, after polymerization of the resin, resulted in an improvement of hardness comparable to the hardwood beech. A finite element model describing the effect of increasing depth of modification on hardness demonstrated that under the test conditions chosen for this study, a minimum impregnation depth of 2 mm is necessary to achieve an optimum increase in hardness. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 298: C1245-C1252, 2010. First published February 17, 2010; doi: 10.1152/ajpcell.00417.2009.-Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micropatterning to minimize geometric variation. We measured the local cell stiffness and loss tangent with optical magnetic twisting cytometry and the local rate of CSK remodeling with spontaneous displacements of a CSK-bound bead. We also measured traction distributions with traction microscopy and cell geometry with atomic force microscopy. On the basis of these experimental observations, we used finite element methods to map for the first time the regional distribution of intracellular prestress. Compared with the cell center or edges, cell corners were systematically stiffer and more fluidlike and supported higher traction forces, and at the same time had slower remodeling dynamics. Local remodeling dynamics had a close inverse relationship with local cell stiffness. The principal finding, however, is that systematic regional variations of CSK stiffness correlated only poorly with regional F-actin density but strongly and linearly with the regional prestress. Taken together, these findings in the intact cell comprise the most comprehensive characterization to date of regional variations of cytoskeletal mechanical properties and their determinants.
Resumo:
The purpose of this work was the force-displacement response analysis of the masticatory process in a dried human skull by Double-Exposure Photorefractive Holographic Interferometry Technique (2E-PRHI). The load concentration and dissipation of the forces from dried human skull were analysed at applied loading stands as a Simulation of Isolated Contraction (SIC) of some mastication muscles. The 2EHI and Fringe Analysis Method were used to obtain the quantitative results of this force-displacement response. These results document quantitatively the real biomechanical response from dried human skull under applied loading and it can be used for complementary study by finite element model and others analysis type. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
One of the first questions to consider when designing a new roll forming line is the number of forming steps required to produce a profile. The number depends on material properties, the cross-section geometry and tolerance requirements, but the tool designer also wants to minimize the number of forming steps in order to reduce the investment costs for the customer. There are several computer aided engineering systems on the market that can assist the tool designing process. These include more or less simple formulas to predict deformation during forming as well as the number of forming steps. In recent years it has also become possible to use finite element analysis for the design of roll forming processes. The objective of the work presented in this thesis was to answer the following question: How should the roll forming process be designed for complex geometries and/or high strength steels? The work approach included both literature studies as well as experimental and modelling work. The experimental part gave direct insight into the process and was also used to develop and validate models of the process. Starting with simple geometries and standard steels the work progressed to more complex profiles of variable depth and width, made of high strength steels. The results obtained are published in seven papers appended to this thesis. In the first study (see paper 1) a finite element model for investigating the roll forming of a U-profile was built. It was used to investigate the effect on longitudinal peak membrane strain and deformation length when yield strength increases, see paper 2 and 3. The simulations showed that the peak strain decreases whereas the deformation length increases when the yield strength increases. The studies described in paper 4 and 5 measured roll load, roll torque, springback and strain history during the U-profile forming process. The measurement results were used to validate the finite element model in paper 1. The results presented in paper 6 shows that the formability of stainless steel (e.g. AISI 301), that in the cold rolled condition has a large martensite fraction, can be substantially increased by heating the bending zone. The heated area will then become austenitic and ductile before the roll forming. Thanks to the phenomenon of strain induced martensite formation, the steel will regain the martensite content and its strength during the subsequent plastic straining. Finally, a new tooling concept for profiles with variable cross-sections is presented in paper 7. The overall conclusions of the present work are that today, it is possible to successfully develop profiles of complex geometries (3D roll forming) in high strength steels and that finite element simulation can be a useful tool in the design of the roll forming process.
Resumo:
Neste trabalho é desenvolvida uma metodologia de projeto para identificar as regiões críticas da estrutura de um reboque de linha leve sendo tracionado em pavimentos do tipo rodovia de baixa qualidade e estrada secundária de muito baixa qualidade. Para tanto, são levantados alguns dados experimentais da estrutura, necessários para a aproximação e simulação dinâmica de um modelo simplificado. A excitação da base é realizada por atuadores que simulam as oscilações verticais de um perfil de estrada, a qual é definida de acordo com os estudos realizados por Dodds e Robson (1973). Isto permite a determinação de um histórico de carregamentos das regiões da estrutura do chassi sob a ação das molas da suspensão. Em seguida, é gerado um modelo estrutural simplificado do reboque em elementos finitos, chamado de global, no qual são determinadas as regiões sob ação das maiores tensões. Tendo identificada a região mais crítica da estrutura, é criado um modelo local desta parte, onde se pode observar a distribuição de tensões com mais detalhe, permitindo a identificação dos pontos de concentração de tensões. Desta forma, com a aplicação do método de análise global-local é possível a obtenção de resultados detalhados quanto aos esforços da estrutura com um menor custo computacional.
Resumo:
The study of algorithms for active vibration control in smart structures is an area of interest, mainly due to the demand for better performance of mechanical systems, such as aircraft and aerospace structures. Smart structures, formed using actuators and sensors, can improve the dynamic performance with the application of several kinds of controllers. This article describes the application of a technique based on linear matrix inequalities (LMI) to design an active control system. The positioning of the actuators, the design of a robust state feedback controller and the design of an observer are all achieved using LMI. The following are considered in the controller design: limited actuator input, bounded output (energy) and robustness to parametric uncertainties. Active vibration control of a flat plate is chosen as an application example. The model is identified using experimental data by an eigensystem realization algorithm (ERA) and the placement of the two piezoelectric actuators and single sensor is determined using a finite element model (FEM) and an optimization procedure. A robust controller for active damping is designed using an LMI framework, and a reduced model with observation and control spillover effects is implemented using a computer. The simulation results demonstrate the efficacy of the approach, and show that the control system increases the damping in some of the modes.
Resumo:
The search for better performance in the structural systems has been taken to more refined models, involving the analysis of a growing number of details, which should be correctly formulated aiming at defining a representative model of the real system. Representative models demand a great detailing of the project and search for new techniques of evaluation and analysis. Model updating is one of this technologies, it can be used to improve the predictive capabilities of computer-based models. This paper presents a FRF-based finite element model updating procedure whose the updating variables are physical parameters of the model. It includes the damping effects in the updating procedure assuming proportional and non proportional damping mechanism. The updating parameters are defined at an element level or macro regions of the model. So, the parameters are adjusted locally, facilitating the physical interpretation of the adjusting of the model. Different tests for simulated and experimental data are discussed aiming at evaluating the characteristics and potentialities of the methodology.