974 resultados para Excitation wavelength
Resumo:
A prototype fibre-optic system using interferometric wavelength-shift detection, capable of multiplexing up to 32 fibre-optic Bragg grating strain and temperature sensors with identical characteristics, has been demonstrated. This system is based on a spatially multiplexed scheme for use with fibre-based low-coherence interferometric sensors, reported previously. Four fibre-optic Bragg grating channels using the same fibre grating have been demonstrated for measuring quasi-static strain and temperature.
Resumo:
We investigate numerically the dependence of higher harmonics of the space-charge field on the detuning frequency between the pump waves, which form a running interference pattern. Bistability and hysteresis of harmonics are predicted for a contrast of the interference pattern m =(0.25-0.3). For contrasts m˜1 and small detuning frequencies we show the existence of a narrow resonance, connected with the nonlinear excitation of a slowly decreasing sequence of spatial harmonics. For experiments we use a BSO crystal in the optical configuration which avoids nonlinear optical distortions. The experimental data show good qualitative agreement with theory.
Resumo:
The authors study experimentally ~10 ps return-to-zero pulse propagation near the net dispersion zero of an optical fibre transmission line. Stable near-jitter-free propagation was observed over 70 Mm. Pulse stabilisation and ASE suppression were achieved through the saturable aborber mechanism of nonlinear polarisation rotation.
Resumo:
We demonstrate a novel dual-wavelength erbium-fiber laser that uses a single nonlinear-optical loop mirror modulator to simultaneously modelock two cavities with chirped fiber Bragg gratings as end mirrors. We show that this configuration produces synchronized soliton pulse trains with an ultra-low RMS inter-pulse-stream timing jitter of 620 fs enabling application to multiwavelength systems at data rates in excess of 130 Gb/s. © 1995 IEEE
Resumo:
A novel wavelength-division-multiplexed in-fibre Bragg grating sensor system combined with high resolution drift-compensated interferometric wavelength-shift detection is described. This crosstalk-free system is based on the use of an interferometric wavelength scanner and a low resolution spectrometer. A four element system is demonstrated for temperature measurement, and a resolution of ±0.1°C has been achieved.
Resumo:
We describe an all-fibre, passive scheme for making extended range interferometric measurements based on the dual wavelength technique. The coherence tuned interferometer network is illuminated with a single superfluorescent fibre source at 1.55 μm and the two wavelengths are synthesised at the output by means of chirped fibre Bragg gratings. We demonstrate an unambiguous sensing range of 270 μm, with a dynamic range of 2.7 × 105.
Resumo:
We analyze the nonlinear excitation of holographic gratings in a photorefractive crystal being subject to an alternating electric field and a stationary light interference pattern. The influence of the higher harmonics on the fundamental grating is illustrated for the case where a crystal of Bi12SiO20 is the recording medium. We analyze both the steady state and the transient consequences of the higher harmonic excitation.
Resumo:
A Bragg grating fast tunable filter prototype working over a linear tuning range of 45 nm with a maximum tuning speed of 21 nm/ms has been realized. The tunable filter system is based on two piezoelectric stack actuators moving a mechanical device thus compressing an apodized fiber Bragg grating. The filter allows both traction and compression and can work in transmission and in reflection. It is designed to work with a channel spacing of 100 GHz according to the ITU specifications for wavelength division multiplexing systems.
Resumo:
A technique for interrogating multiplexed fibre Bragg grating (FBG) sensors using an arrayed waveguide grating (AWG) is described. The approach considerably extends the sensing range from that achieved previously, while providing a strain resolution of 17nε/√Hz at 30 Hz.
Resumo:
Supercontinuum generation in ultra-long Raman fibre laser cavities is compared for a range of fibre dispersions in the anomalous and normal regimes. For normal dispersion improved performance and efficiency is achieved using dual wavelength pumping.
Resumo:
We investigate the impact of a duty cycle on a wavelength allocated transmission at 40 Gbit/s with narrow, off-centre, optical filtering. We also study how the shape of the off-centred VSB filter affects the performance of the optical system. © 2004 Elsevier Inc. All rights reserved.
Resumo:
Extracellular single-unit recordings in mouse brain slices were used to determine the effect of exogenously applied 5-HT on STN neurones. Recordings were made from 74 STN cells which fired action potentials at a regular rate of 7.19 ± 0.5 Hz. In 61 cells (82%), 5-HT application increased STN neurone firing rate (10 μM, 180 ± 16.8%, n = 35) with an estimated EC 50 of 5.4 μM. The non-specific 5-HT2 receptor agonist α-methyl 5-HT (1-10 μM) mimicked 5-HT induced excitations (15 cells). These excitations were significantly reduced by pre-perfusion with the specific 5-HT2C receptor antagonist RS102221 (500 nM, 9 cells) and the 5HT4 antagonist GR113808 (500 nM, 7 cells). In 6 cells (8%) 5-HT induced biphasic responses where excitation was followed by inhibition, while in 7 cells (9%) inhibition of firing rate was observed alone. Inhibitory responses were reduced by the 5-HT1A antagonist WAY100135 (1 μM, 4 cells). No inhibitory responses were observed following α-methyl 5-HT applications. Both the excitations and inhibitions were unaffected by picrotoxin (50 μM, n = 5) and CNQX (10 μM, n = 5) indicative of direct postsynaptic effects. Thus, in STN neurones, 5-HT elicits two distinct effects, at times on the same neurone, the first being an excitation which is mediated by 5-HT 2C and 5-HT4 receptors and the second an inhibition which is mediated by 5-HT1A receptors. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Wavelength-locking of a multiwavelength stabilized slotted Fabry-Perot (SFP) laser to a single-mode laser source is experimentally demonstrated. The SFP resonates at channels spaced by similar to 8 nm between 1510 and 1565 nm over a wide range of temperatures and drive currents. Under low-power (<- 20 dBm) external optical injection, wavelength-locking with a sidemode suppression ratio (SMSR) > 25 dB is achieved. A locking width of > 25 GHz and SMSR > 30 dB can be achieved for each locked wavelength channel at injection power > - 16 dBm.
Resumo:
Broadband wavelength tunability over 136 nm (between 1182.5 nm and 1319 nm) of picosecond pulses in passive mode-locked regime is demonstrated in a multi-section quantum-dot laser in external cavity configuration at room temperature. The maximum peak power of 870 mW with 15 ps pulse duration was achieved at 1226 nm wavelength. © 2012 American Institute of Physics.
Resumo:
Wavelength bistability and tunability are demonstrated in a two-sectional quantum-dot mode-locked laser with a nonidentical capping layer structure. The continuous wave output power of 30 mW (25 mW) and mode-locked average power of 27 mW (20 mW) are achieved for 1245 nm (1295 nm) wavelengths, respectively, under the injection current of 300 mA. The largest switching range of more than 50 nm and wavelength tuning range with picosecond pulses and stable lasing wavelengths between 1245 and 1295 nm are demonstrated for gain current of 300 and 330 mA. © 1995-2012 IEEE.