940 resultados para Ethanol adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation and adsorption of the temperature-denatured DNA at GC electrode are studied by differential pulse voltammetry and in situ FTIR spectroelectrochemistry. The temperature-denatured DNA is adsorbed and formed a DNA multilayer at electrode surface. The temperature-denatured DNA showing partly reversible process was first observed based on the reduction peaks appearing at negative scans and the reversible spectral change. The oxidation product of the temperature-denatured DNA can not diffuse away from the electrode surface easily due to the impediment of the DNA multilayer, so it can be partly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly of alternating DNA and positively charged poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer-by-layer adsorption has been studied. The real-time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. Electrochemical impedance spectroscopy (EIS) and UV-vis absorbance measurements were also used to study the film assembly, and linear film growth was observed. All the results indicate that the uniform multilayer can be obtained on the poly(ethylenimine)- (PEI-) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by the real-time BIAcore technique; the observed rate constant was calculated using a Langmuir model (k(obs) = (1.28 +/- 0.08) x 10(-2) s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrooxidation of vitamin D-2 (VD2) was studied by cyclic voltammetry and in situ circular dichroic (CD) spectroelectrochemistry for the first time, The mechanism of electrooxidation and some useful kinetic and adsorption parameters were obtained. The results showed that the oxidation of VD2 in ethanol solution is an irreversible diffusion controlled process following a weak adsorption of the electroinactive product at a glassy carbon electrode, which blocks the electrochemical reaction. The electrooxidation occurs mainly at the triene moieties of the VD2 molecule. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E-0 = 1.08 V, alphan = 0.245, the standard electrochemical rate constant k(0) = 4.30( +/- 0.58) x 10(-4) cm s(-1) and the adsorption constant beta = 1.77(+/- 0.25) were obtained. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elucidation of key influence factors for electrostatic adsorption is very important to control protein nonspecific adsorption on modified surfaces. In this study, real-time surface plasmon resonance technique is used to characterize the electrostatic adsorption of two proteins (mouse IgG and protein A) on carboxymethyldextran-modified surface. The results show that protein solution pH and ionic strength are key influence factors for efficient electrostatic adsorption. The influence of protein, solution pH on the amount of electrostatic adsorption depends on the type of the charge and the charge density of both protein and modified matrix on the surface. The electrostatic adsorption process involves a competition between the positively charged protein and other positively charged species in the buffer solution. A decrease of ionic strength leads to an increasing electrostatic adsorption. The kinetic adsorption constants of protein A at different pH values were also calculated and compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and oxidation of yeast RNA and herring sperm DNA (HS DNA) at glass carbon (GC) electrode are studied by differential pulse voltammetry (DPV) and in situ FTIR spectroelectrochemistry. Two oxidation peaks of yeast RNA are obtained by DPV, whose peak potentials shift negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, thus indicating that the oxidation process of yeast RNA is completely irreversible. The IR bands in the 1200-1800 cm-l range, attributed to the stretching and ring vibrations of nucleic acid bases, show the main spectral changes when the potential is shifted positively, which gives evidence that the oxidation process takes place in the base residues. The oxidation process of HS DNA is similar to that of yeast RNA. The results both from DPV and in situ FTIR spectroelectrochemistry confirm that the guanine and adenine residues can be oxidized at the electrode surface, which is consistent with the oxidation mechanism of nucleic acids proposed previously. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ Fourier transform infra-red (FTIR) spectra of native and thermally denatured calf thymus DNA (CT DNA) adsorbed and/or oxidized at a glassy carbon (GC) electrode surface are reported. The adsorption of native DNA occurs throughout the potential range (-0.2 similar to 1.3 V) studied, and the adsorbing state of DNA at electrode surface is changed from through the C=O band of bases and pyrimidine rings to through the C=O of cytosine and imidazole rings while the potential shifts negatively from 1.3 V to -0.2 V. An in-situ FTIR spectrum of native CT DNA adsorbed at GC electrode surface is similar to that of the dissolved DNA, indicating that the structure of CT DNA is not distorted while it is adsorbed at the GC electrode surface. In the potential range of -0.2 similar to 1.30 V, the temperature-denatured CT DNA is adsorbed at the electrode surface first, then undergoes electrochemical oxidation reaction and following that, diffuses away from the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of an electroinactive product greatly influences an irreversible electrochemical reaction in three ways, including self-block, self-inhibition, and self-acceleration, and changes not only the heterogeneous electron-transfer rate constant but also the modified formal potential and electron-transfer coefficient of the electrochemical reaction. In order to study these adsorption effects, a double logarithmic method was suggested to be used in processing the potential-controlled thin layer spectroelectrochemical data. The result shows three types of double logarithmic plots for three kinds of adsorption effects. These double logarithmic plots can be a diagnostic criterion of the adsorption effects and enable us to determine some thermodynamic and kinetic parameters. The combination of nonlinear regression with double logarithmic method is a convenient way to examine the suggested mechanism and to extract more information from the limited experimental data. Some examples are given to test the theoretical results. (C) 1999 The Electrochemical Society. S0013-4651(98)05-012-5. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroxidation of ergosterol was studied by in situ circular dichroic (CD) spectroelectrochemistry with a long optical path length thin layer cell. It was confirmed that the oxidation of ergosterol in ethanol solution is a two-electron irreversible electrochemical process with strong adsorption of an electroinactive product at the glassy carbon electrode, which blocks the electrochemical reaction. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential, E-0 = 1.00 V, alpha n(alpha) = 0.302, the standard electrochemical rate constant, k(0) = 6.1(+/-0.4) x 10(-4) cm s(-1) and the adsorption constant, beta = 19 +/- 1, were obtained. The number of electrons transferred (n = 1.86) was estimated by cyclic voltammetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ electrochemical scanning tunneling microscopy, alternating current voltammetry, and electrochemical quartz crystal microbalance have been employed to follow the potential-dependent adsorption/desorption processes of nucleic acid bases on highly oriented pyrolytic graphite (HOPG) electrode. The results show that (i) potential-dependent adsorption/desorption of nucleic acid bases on HOPG electrode was accompanied by delamination of the HOPG surface, and the delamination initiates from steps or kinks on the electrode surface, which provide highly active sites for adsorption; (ii) the delamination usually occurred when the electrode potential was changed or when the electrode was at potentials where the phase transition of adsorbate occurred. These results suggest that the surface stress resulting from the interaction between the substrate and adsorbate, as well as the interaction due to potential-induced surface charge distribution and the hysteresis of charge equilibrium are the main factors resulting in HOPG delamination. (C) 1999 The Electrochemical Society. S0013-4651(97)12-013-4. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ electrochemical scanning tunneling microscopy (ECSTM) and an electrochemical quartz crystal microbalance (EQCM) have been employed to follow the adsorption/desorption processes of phenanthraquinone (PQ sat. in 0.1 mol l(-1) HClO4, solution) accompanied with an electrochemical redox reaction on the Au electrode. The result shows that: (1) the reduced form PQH(2) adsorbed at the Au electrode and the desorption occurred when PQH(2) was oxidized to PQ; (2) the adsorption process initiates at steps or kinks which provide high active sites on the electrode surface for adsorption, and as the potential shifts to negative, a multilayer of PQH(2) may be formed at the Au electrode; (3) the reduced PQH(2) adsorbed preferentially in the area where the tip had been scanned continually; this result suggests that the tip induction may accelerate the adsorption of PQH(2) on the Au(111) electrode. Two kinds of possible reason have been discussed; (4) high resolution STM images show the strong substrate lattice information and the weak monolayer adsorbate lattice information simultaneously. The PQH(2) molecules pack into a not perfectly ordered condensed physisorbed layer at potentials of 0.1 and 0.2 V with an average lattice constant a = 11.5 +/- 0.4 Angstrom, b = 11.5 +/- 0.4 Angstrom, and gamma = 120 +/- 2 degrees; the molecular lattice is rotated with respect to the substrate lattice by about 23 +/- 2 degrees. (C) 1997 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ligand effects of acrylonitrile, EtOH, DMF and DMSO on the electrochemical oxidation reactions of (OEP)Co were investigated by CV monitored electrochemical titration and in - situ thin - layer spectroelectrochemical method. The formation constants of (OEP)Co(III) with these molecules were calculated. The magnitude of the values shows the order of acrylonitrile

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption and activation of small molecules NO, CO and CO+ NO on LaSrCuO4, La2CuO4 and La1.7Th0.3CuO4 which are typical samples in the sence of nonstoichiometric oxygen(lambda) anrong the series of La2-x(SrTh)(x)CuO4 +/-lambda mixed oxide catalysts were studied by means of MS- TPD (TPSR ), XRD, chemical analysis and so on. It was shown that the adsorption amount of NO can be correlated with the content of oxygen vacancy while the types and strength of adsorption of NO could be related to the oxidation state of the metallic ion. It was also found that CO molecule was first converted into CO32- and then desorbed in the form of CO2 at high temperature during the adsorption and desorption of CO on the mixed oxide with oxygen vacancy. The fact that the profiles of TPD(TPSR) of NO in co-adsorption of NO+CO and in single NO adsorption are similar shows that the adsorption of NO molecule not only has some priority to that of CO but also is stronger than that of CO. It seems that the adsorption of NO plays a dominate role in the activation and decomposition of NO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heteropoly acids (HPAs), such as dodecatungstosilicic acid (SiW12), adsorb strongly on to activated carbons. The surface chemical properties of the activated carbons have a pronounced effect on the adsorption of HPAs. To obtain activated carbons with the desired surface chemical properties, modification with mineral acids has been applied. The adsorption isotherms of SiW12 from aqueous solution and various acidic media on to the various carbons have been studied. On the basis of the results obtained, an adsorption model for HPAs from acidic media is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In various acidic media, such as H2SO4, HCl, H3PO4, acetic acid of 3 M in hydrogen ion concentration, and pure acetic acid, the adsorption of heteropolyacids composed of molybdenum with the Keggin structures PMo12 and SiMo12 on different activated carbons is studied. In acidic media, the adsorbed amount of heteropolyacids is much higher than that in water. By considering the relation between adsorbed amount and the acid strength of the media, as far as SiMo12 and PMo12 are concerned, there exist different trends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 with perovskite (ABO(3)) and related(A(2)BO(4)) structures were prepared and the adsorption property for NO and the catalytic activity for NO decomposition over these oxidse were also tested. The catalysts were characterized by means of BET surface measurement, chemical analysis, NO-TPD etc.. It was shown that the adsorption amount of NO is correlated with the concentration of oxygen vacancy formed and the adsorption type and strength of NO are related to the valence of metallic ion. Generally there are three kinds of adsorption species, NO-, NO+ and NO on the mixed oxides, among them the negative adsorpion species (NO-) are active for NO decomposition. The weaker the adsorption of oxygen on the catalyst is, the faster the mobility of oxygen is and the easier the redox process takes place in reproducing the active sites in which the oxygen species (O-, O2-) would participate.