986 resultados para Estimating Site Occupancy
Resumo:
Nanocrystalline Mn0.4Zn0.6SmxGdyFe2-(x+y)O4 (x = y = 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by combustion route. The detailed structural studies were carried out through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM). The results confirms the formation of mixed spine phase with cubic structure due to the distortion created with co-dopants substitution at Fe site in Mn-Zn ferrite lattice. Further, the crystallite size increases with an increase of Sm3+-Gd3+ ions concentration while lattice parameter and lattice strain decreases. Furthermore, the effect of Sm-Gd co-doping in Mn-Zn ferrite on the room temperature electrical (dielectric studies) studies were carried out in the wide frequency range 1 GHz-5 GHz. The magnetic studies were carried out using vibrating sample magnetometer (VSM) under applied magnetic field of 1.5T and also room temperature electron paramagnetic resonance (EPR) spectra's were recorded. From the results of dielectric studies, it shows that the real and imaginary part of permittivities are increasing with variation of Gd3+ and Sm3+ concentration. The magnetic studies reveal the decrease of remnant, saturation magnetization and coercivity with increasing of Sm3+-Gd3+ ion concentration. The g-value, peak-to-peak line width and spin concentration evaluated from EPR spectra correlated with cations occupancy. The electromagnetic properties clearly indicate that these materials are the good candidates which are useful at L and C band frequency. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 mu m) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 mu m). Particles smaller than 0.8 mu m (at aerodynamic size) constitute similar to 99% of all particles in winter and similar to 90% of particles in summer season. However, particles greater than 2 mu m contribute similar to 3% and similar to 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from That Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 pm is the key contributor in winter for higher ANC. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Long-term (2009-2012) data from ground-based measurements of aerosol black carbon (BC) from a semi-urban site, Pantnagar (29.0 degrees N, 79.5 degrees E, 231 m amsl), in the Indo-Gangetic Plain (IGP) near the Himalayan foothills are analyzed to study the regional characterization. Large variations are seen in BC at both diurnal and seasonal scales, associated with the mesoscale and synoptic meteorological processes, and local/regional anthropogenic activities. BC diurnal variations show two peaks (morning and evening) arising from the combined effects of the atmospheric boundary layer (ABL) dynamics and local emissions. The diurnal amplitudes as well as the rates of diurnal evolution are the highest in winter season, followed by autumn, and the lowest in summer-monsoon. BC exhibits nearly an inverse relation with mixing layer depth in all seasons; being strongest in winter (R-2 = 0.89) and weakest (R-2 = 0.33) in monsoon (July-August). Unlike BC, co-located aerosol optical depths (AOD) and aerosol absorption are highest in spring over IGP, probably due to the presence of higher abundances of aerosols (including dust) above the ABL (in the free troposphere). AOD (500 nm) showed annual peak (>0.6) in May-June, dominated by coarse mode, while fine mode aerosols dominated in late autumn and early winter. Aerosols profiles from CALIPSO show highest values close to the surface in winter/autumn, similar to the feature seen in surface BC, whereas at altitudes > 2 km, the extinction is maximum in spring/summer. WRF-Chem model is used to simulate BC temporal variations and then compared with observed BC. The model captures most of the important features of the diurnal and seasonal variations but significantly underestimated the observed BC levels, suggesting improvements in diurnal and seasonal varying BC emissions apart from the boundary layer processes. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant d- and localized f-electrons) and intersite (superexchange) correlation J (between localized f-electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of d- and f-electrons are observed to depend strongly on the value off, J and also on the total number of d-electrons (N-d). (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2g and persisted only for a period of 1s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India.
Resumo:
Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2g and persisted only for a period of 1s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India.
Resumo:
Despite extensive research into triosephosphate isomerases (TIMs), there exists a gap in understanding of the remarkable conjunction between catalytic loop-6 (residues 166-176) movement and the conformational flip of Glu165 (catalytic base) upon substrate binding that primes the active site for efficient catalysis. The overwhelming occurrence of serine at position96 (98% of the 6277 unique TIM sequences), spatially proximal to E165 and the loop-6 residues, raises questions about its role in catalysis. Notably, Plasmodium falciparum TIM has an extremely rare residuephenylalanineat this position whereas, curiously, the mutant F96S was catalytically defective. We have obtained insights into the influence of residue96 on the loop-6 conformational flip and E165 positioning by combining kinetic and structural studies on the PfTIM F96 mutants F96Y, F96A, F96S/S73A, and F96S/L167V with sequence conservation analysis and comparative analysis of the available apo and holo structures of the enzyme from diverse organisms.
Resumo:
The phenomena of the 'piling up' and 'sinking-in' of surface profiles in conical indentation in elastic-plastic solids with work hardening are studied using dimensional and finite-element analysis. The degree of sinking in and piling up is shown to depend on the ratio of the initial yield strength Y to Young's modulus E and on the work-hardening exponent n. The widely used procedure proposed by Oliver and Pharr for estimating contact depth is then evaluated systematically. By comparing the contact depth obtained directly from finite-element calculations with that obtained from the initial unloading slope using the Oliver-Pharr procedure, the applicability of the procedure is discussed.
Resumo:
This paper considers a class of dynamic Spatial Point Processes (PP) that evolves over time in a Markovian fashion. This Markov in time PP is hidden and observed indirectly through another PP via thinning, displacement and noise. This statistical model is important for Multi object Tracking applications and we present an approximate likelihood based method for estimating the model parameters. The work is supported by an extensive numerical study.