985 resultados para Error estimate.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A case study of an aircraft engine manufacturer is used to analyze the effects of management levers on the lead time and design errors generated in an iteration-intensive concurrent engineering process. The levers considered are amount of design-space exploration iteration, degree of process concurrency, and timing of design reviews. Simulation is used to show how the ideal combination of these levers can vary with changes in design problem complexity, which can increase, for instance, when novel technology is incorporated in a design. Results confirm that it is important to consider multiple iteration-influencing factors and their interdependencies to understand concurrent processes, because the factors can interact with confounding effects. The article also demonstrates a new approach to derive a system dynamics model from a process task network. The new approach could be applied to analyze other concurrent engineering scenarios. © The Author(s) 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do hospitals experience safety tipping points as utilization increases, and if so, what are the implications for hospital operations management? We argue that safety tipping points occur when managerial escalation policies are exhausted and workload variability buffers are depleted. Front-line clinical staff is forced to ration resources and, at the same time, becomes more error prone as a result of elevated stress hormone levels. We confirm the existence of safety tipping points for in-hospital mortality using the discharge records of 82,280 patients across six high-mortality-risk conditions from 256 clinical departments of 83 German hospitals. Focusing on survival during the first seven days following admission, we estimate a mortality tipping point at an occupancy level of 92.5%. Among the 17% of patients in our sample who experienced occupancy above the tipping point during the first seven days of their hospital stay, high occupancy accounted for one in seven deaths. The existence of a safety tipping point has important implications for hospital management. First, flexible capacity expansion is more cost-effective for safety improvement than rigid capacity, because it will only be used when occupancy reaches the tipping point. In the context of our sample, flexible staffing saves more than 40% of the cost of a fully staffed capacity expansion, while achieving the same reduction in mortality. Second, reducing the variability of demand by pooling capacity in hospital clusters can greatly increase safety in a hospital system, because it reduces the likelihood that a patient will experience occupancy levels beyond the tipping point. Pooling the capacity of nearby hospitals in our sample reduces the number of deaths due to high occupancy by 34%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10m × 8m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m 8m and 10m × 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language models (LMs) are often constructed by building multiple individual component models that are combined using context independent interpolation weights. By tuning these weights, using either perplexity or discriminative approaches, it is possible to adapt LMs to a particular task. This paper investigates the use of context dependent weighting in both interpolation and test-time adaptation of language models. Depending on the previous word contexts, a discrete history weighting function is used to adjust the contribution from each component model. As this dramatically increases the number of parameters to estimate, robust weight estimation schemes are required. Several approaches are described in this paper. The first approach is based on MAP estimation where interpolation weights of lower order contexts are used as smoothing priors. The second approach uses training data to ensure robust estimation of LM interpolation weights. This can also serve as a smoothing prior for MAP adaptation. A normalized perplexity metric is proposed to handle the bias of the standard perplexity criterion to corpus size. A range of schemes to combine weight information obtained from training data and test data hypotheses are also proposed to improve robustness during context dependent LM adaptation. In addition, a minimum Bayes' risk (MBR) based discriminative training scheme is also proposed. An efficient weighted finite state transducer (WFST) decoding algorithm for context dependent interpolation is also presented. The proposed technique was evaluated using a state-of-the-art Mandarin Chinese broadcast speech transcription task. Character error rate (CER) reductions up to 7.3 relative were obtained as well as consistent perplexity improvements. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problem of state estimation over a communication network. Using estimation quality as a metric, two communication schemes are studied and compared. In scheme one, each sensor node communicates its measurement data to the remote estimator, while in scheme two, each sensor node communicates its local state estimate to the remote estimator. We show that with perfect communication link, if the sensor has unlimited computation capability, the two schemes produce the same estimate at the estimator, and if the sensor has limited computation capability, scheme one is always better than scheme two. On the other hand, when data packet drops occur over the communication link, we show that if the sensor has unlimited computation capability, scheme two always outperforms scheme one, and if the sensor has limited computation capability, we show that in general there exists a critical packet arrival rate, above which scheme one outperforms scheme two. Simulations are provided to demonstrate the two schemes under various circumstances. © South China University of Technology and Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In current methods for voice transformation and speech synthesis, the vocal tract filter is usually assumed to be excited by a flat amplitude spectrum. In this article, we present a method using a mixed source model defined as a mixture of the Liljencrants-Fant (LF) model and Gaussian noise. Using the LF model, the base approach used in this presented work is therefore close to a vocoder using exogenous input like ARX-based methods or the Glottal Spectral Separation (GSS) method. Such approaches are therefore dedicated to voice processing promising an improved naturalness compared to generic signal models. To estimate the Vocal Tract Filter (VTF), using spectral division like in GSS, we show that a glottal source model can be used with any envelope estimation method conversely to ARX approach where a least square AR solution is used. We therefore derive a VTF estimate which takes into account the amplitude spectra of both deterministic and random components of the glottal source. The proposed mixed source model is controlled by a small set of intuitive and independent parameters. The relevance of this voice production model is evaluated, through listening tests, in the context of resynthesis, HMM-based speech synthesis, breathiness modification and pitch transposition. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10m x 8m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m x 8m and 10m x 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent trend in spoken dialogue research is the use of reinforcement learning to train dialogue systems in a simulated environment. Past researchers have shown that the types of errors that are simulated can have a significant effect on simulated dialogue performance. Since modern systems typically receive an N-best list of possible user utterances, it is important to be able to simulate a full N-best list of hypotheses. This paper presents a new method for simulating such errors based on logistic regression, as well as a new method for simulating the structure of N-best lists of semantics and their probabilities, based on the Dirichlet distribution. Off-line evaluations show that the new Dirichlet model results in a much closer match to the receiver operating characteristics (ROC) of the live data. Experiments also show that the logistic model gives confusions that are closer to the type of confusions observed in live situations. The hope is that these new error models will be able to improve the resulting performance of trained dialogue systems. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a novel method for the training of a complementary acoustic model with respect to set of given acoustic models. The method is based upon an extension of the Minimum Phone Error (MPE) criterion and aims at producing a model that makes complementary phone errors to those already trained. The technique is therefore called Complementary Phone Error (CPE) training. The method is evaluated using an Arabic large vocabulary continuous speech recognition task. Reductions in word error rate (WER) after combination with a CPE-trained system were obtained with up to 0.7% absolute for a system trained on 172 hours of acoustic data and up to 0.2% absolute for the final system trained on nearly 2000 hours of Arabic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method for producing dense Active Appearance Models (AAMs), suitable for video-realistic synthesis. To this end we estimate a joint alignment of all training images using a set of pairwise registrations and ensure that these pairwise registrations are only calculated between similar images. This is achieved by defining a graph on the image set whose edge weights correspond to registration errors and computing a bounded diameter minimum spanning tree (BDMST). Dense optical flow is used to compute pairwise registration and we introduce a flow refinement method to align small scale texture. Once registration between training images has been established we propose a method to add vertices to the AAM in a way that minimises error between the observed flow fields and a flow field interpolated between the AAM mesh points. We demonstrate a significant improvement in model compactness using the proposed method and show it dealing with cases that are problematic for current state-of-the-art approaches.