973 resultados para Enzimas - Toxicologia
Resumo:
The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river
Resumo:
Riboflavin is a vitamin very important in aerobic organisms, as a precursor of many coenzymes involved in the electron transporter chain. However, after photosensitization of riboflavin with UV or visible light, it generates reactive oxygen species (ROS), which can oxidize the DNA. The repair of oxidative lesions on DNA occurs through the base excision repair pathway (BER), where APE1 endonuclease plays a central role. On the other hand, the nucleotide excision repair pathway (NER) repairs helix-distorting lesions. Recently, it was described the participation of NERproteins in the repair of oxidative damage and in stimulation of repair function fromAPE1. The aim of this research was to evaluate the cytotoxic effects of photosensitized riboflavin (RF*) in cells proficient and deficient in NER, correlating with APE1 expression. For this propose, the cells were treated with RF* and it was performed the cell viability assay, extraction of whole proteins, cells fractionation, immunoblotting, indirect immunofluorescence and analysis of polymorphisms of BER gens. The results evidenced that cells deficient in XPA and CSB proteins were more sensitive to RF*. However, XPC-deficient cells presented similar resistance to MRC5- SV cells, which is proficient in NER. These results indicate that XPA and CSB proteins have an important role on repair of oxidative lesions induced by RF*. Additionally, it was evidenced that single nucleotide polymorphisms (SNPs) in BER enzymes may influence in sensitivity of NER-deficient cell lines. Concerning the APE1 expression, the results showed that expression of this protein after treatment with RF* only changed in XPC-deficient cells. Though, it was observed that APE1 is recruited and is bound to chromatin in MRC5-SV and XPA cells after treatment with RF*. The results also showed the induction of DNA damage after treatment with RF*, through the analysis of-H2AX, since the treatment promoted an increase of endogenous levels of this phosphorylated protein, which acts signaling double strand-break on DNA. On the other hand, in XPC-deficient cells, regardless of resistance of RF*, the endogenous levels of APE1 are extremely reduced when compared with other cell lines and APE1 is not bound to chromatin after treatment with RF*. These results conclude that RF* was able to induce cell death in NERdeficient cells, where XPA and CSB cells were more sensitive when compared with MRC5-SV and XPC-deficient cells. This last result is potentially very interesting, since XPC-deficient cell line presents low levels of APE1. Additionally, the results evidenced that APE1 protein can be involved in the repair of oxidative damage induced by RF*, because APE1 is recruited and bound strongly to chromatin after treatment.
Resumo:
Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
The decoction of Brazilian pepper tree barks (Schinus terebinthifolius, Raddi), is used in medicine as wound healing and antiinflamatory. Once extracts from this plant are used for acceleration of scar s process, it is important to study their mutagenic and genotoxic potential. In previous works in our laboratory, it was observed mutagenicity caused by the decoction when in high concentrations. Among the chemical compounds of this plant that could be able to induce mutation, the flavonoids were the only group that was referred to have either an oxidant or antioxidant potential. The flavonoids were isolated, purified and quantified by adsorptive column chromatography under silica gel, bacterial and in vitro genotoxic tests were realized to determine if the flavonoids were the responsible agents for this mutagenicity found. The tests realized with plasmidial DNA were indicative that the flavonoids are probably genotoxic, due to the presence of correlation between increase of the flavonoid concentration and in plasmidial DNA double strand breakage visualized in agarose gel, as well as they were capable to generated abasic sites shown by the in vitro treatment with exonuclease III. The same tests with plasmidial DNA in the presence of copper [10 µM] and of a Tris-HCl pH 7.5 [10 µM] buffer were realized with the isolated flavonoids to determine if there would be or not participation of reactive oxygen species (ROS). The transformation of plasmidial DNA in different bacterial strains proficient and deficient in DNA repair enzymes in the presence or not of a Tris-HCl buffer, suggests that the enzymes that repair oxidative lesions are necessary to repair the lesions generated by the flavonoids and that ROS are generated and are necessary to promote the lesions. Bacterial tests with Escherichia coli strains of the CC collection (deficient or not for DNA repair enzymes), showed that the flavonoids are able to increase the frequency of mutations, mainly in strains mutated in repair enzymes (MutM, MutY-glicosylases and double mutant), suggesting that these agents are responsible for the enhancement in the mutation rate. In order to determine the mutation spectrum caused by the flavonoids of the Brazilian pepper tree stem bark, plasmidial DNA previously treated with the flavonoids were transformed in bacterial strains deficient and proficient in the DNA repair enzymes, followed by a blue-white selection with X-gal, DNA amplification by PCR and sequencing the positive mutant clones. Analysis of the mutants obtained from strains CC104, CC104mutM, CC104mutY, CC104mutMmutY, BW9101, BW9109 indicated a predominance of some mutations like G:C to C:G that can be correlated with the origin of 8-oxoG, due to oxidative lesions caused by the flavonoids. So it can concluded that the flavonoid isolated or in fractions enriched on them are genotoxic and mutagenic, and their mutations are predominantly oxidative, mediated by ROS, and the lesions are recognized by the BER system. In this way it is proposed that the flavonoids can act in two different ways to generate the DNA lesion: 1. in a Fenton-like reaction, when the flavonoid are in the presence of metal ions and that together with the water generate ROS that promotes the DNA lesions; 2. in another way the lesions can be generated by the formation of ROS due to the internal chemical structure of the flavonoid molecule due to the quantity and location of hydroxyl groups, and so producing the DNA lesions, those lesions can be directly (suggested by the in vitro experiments) or indirectly done (supported by the experiments using the CC bacterial strains)
Resumo:
Micro and nanoparticulate systems as drug delivery carriers have achieved successful therapeutic use by enhancing efficacy and reducing toxicity of potent drugs. The improvement of pharmaceutical grade polymers has allowed the development of such therapeutic systems. Microencapsulation is a process in which very thin coatings of inert natural or synthetic polymeric materials are deposited around microsized particles of solids or around droplets. Products thus formed are known as microparticles. Xylan is a natural polymer abundantly found in nature. It is the most common hemicellulose, representing more than 60% of the polysaccharides existing in the cell walls of corn cobs, and is normally degraded by the bacterial enzymes present in the colon of the human body. Therefore, this polymer is an eligible material to produce colon-specific drug carriers. The aim of this study was to evaluate the technological potential of xylan for the development of colon delivery systems for the treatment of inflammatory bowel diseases. First, coacervation was evaluated as a feasible method to produce xylan microcapsules. Afterwards, interfacial cross-linking polymerization was studied as a method to produce microcapsules with hydrophilic core. Additionally, magnetic xylan-coated microcapsules were prepared in order to investigate the ability of producing gastroresistant systems. Besides, the influence of the external phase composition on the production and mean diameter of microcapsules produced by interfacial cross-linking polymerization was investigated. Also, technological properties of xylan were determined in order to predict its possible application in other pharmaceutical dosage forms
Resumo:
As mucopolissacaridoses (MPS) são doenças genéticas raras decorrente da deficiência de enzimas lisossomais envolvidas no catabolismo de glicosaminoglicanos, resultando em um amplo espectro de manifestações clínicas, progressivas e multissistêmicas, exigindo tratamento por uma equipe multidisciplinar. Embora o Nordeste brasileiro seja uma região com grande taxa de consangüinidade e um efeito fundador envolvendo MPS, não há estudos caracterizando os pacientes dessa região. Nosso objetivo foi determinar o perfil epidemiológico, clínico e genético de casos não publicados com MPS provenientes do Ceará, identificando as diferenças entre outros estudos com MPS e possíveis problemas a serem enfrentados para a realização do diagnóstico precoce. O estudo foi seccional, descritivo, com amostra de pacientes com MPS em acompanhamento no Hospital Infantil Albert Sabin e Hospital Geral Cesar Cals no período de 2006-2013. Os dados foram obtidos a partir da avaliação clínica, revisão de prontuários médicos e entrevista com os pacientes e/ou familiares realizadas pelo investigador principal. Cinquenta e três pacientes foram incluídos no estudo (36 do sexo masculino), sendo 6 MPS I, 17 MPS II, 7 MPS III (3 MPSIII-A, 3 MPS III-B, 1 MPS III-C), 7 MPS IV-A, 16 de MPS VI. O óbito ocorreu em 16 casos (3 MPS I, MPS II 6, 1 MPS IIIA , IIIB 1MPS , 1 MPS IV , 4 MPS VI). A amostra foi composta principalmente por crianças. Houve elevada taxa de consangüinidade e recorrência familiar. Os tipos mais comuns foram MPS II e MPS VI. Exceto para macrossomia em MPS II, os dados de nascimento indicam que não houve risco para desenvolvimento de viii complicações perinatais. Os sintomas iniciaram em crianças com menos de 2 anos. As manifestações clínicas foram heterogêneas exceto para atraso no desenvolvimento neurológico em MPS III e manifestações esqueléticas em MPS IV. As principais características clínicas foram macrocefalia, baixa estatura, alterações odontológicas, respiratórias, cardíacas, hepatoesplenomegalia, hérnia umbilical, rigidez articular e anormalidades esqueléticas. A terapia de reposição enzimática foi instituída em 26 casos (4 MPS I, 10 MPS II, 12 MPS VI). Os problemas sócio-econômicos das famílias, o amplo espectro de sintomas e a gravidade da doença foram causas das dificuldades em realizar a avaliação periódica pela equipe multidisciplinar, além de exames complementares de maior custo para determinar as complicações da doença. Este foi o maior estudo transversal sobre MPS no Nordeste do Brasil. Em contraste com a maior incidência de MPS I na maioria das populações ocidentais, houve maior incidência de MPS II e VI. As alterações respiratórias foram um dos principais contribuintes para a mortalidade precoce, exceto nos casos de MPS I, em que a cardiomiopatia foi prevalente. A menor expectativa de vida ocorreu em MPS I. O envolvimento cognitivo foi comum em casos graves e o maior número de órgãos envolvidos representou maior risco de morrer. Para o diagnóstico precoce, deve-se buscar indivíduos afetados em famílias em que há parentes com MPS, além do maior reconhecimento de sinais e sintomas de MPS por profissionais de saúde
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Avaliou-se o efeito da inclusão de um complexo enzimático em dietas para tilápias-do-nilo (Oreochromis niloticus) sobre o desempenho, a composição química da carcaça e a qualidade da água. Foram utilizados 200 alevinos revertidos (4,57 ± 1,24 g), distribuídos em delineamento inteiramente casualizado em 20 tanques de 500 litros, com quatro tratamentos e cinco repetições, considerando a unidade experimental uma caixa com dez peixes. Os peixes foram alimentados com dietas contendo 0; 0,033; 0,066 ou 0,099% de complexo enzimático. As dietas foram processadas na forma peletizada e fornecidas quatro vezes ao dia, às 8, 11, 14 e 17 h. Os valores médios de pH, condutividade elétrica, oxigênio dissolvido, temperatura, fósforo total, amônia e nitrato da água de cultivo não foram influenciados pela dieta. A inclusão do complexo enzimático na dieta não afetou o ganho de peso, as taxas de sobrevivência e de crescimento específico, mas influenciou o consumo de ração e a conversão alimentar, cujos valores foram maiores nos peixes alimentados com a dieta com 0,066% de complexo enzimático. Não foram observadas diferenças nos teores de matéria seca, umidade, proteína bruta, matéria mineral, cálcio e fósforo na carcaça dos peixes, no entanto, o teor de extrato etéreo reduziu de forma linear com o aumento do nível de complexo enzimático. A utilização de complexo enzimático (amilase, protease, celulase, lipase, pectinase, xilanase, β-glucanase e fitase) no nível de 0,066% em dietas para juvenis de tilápia-do-nilo piora a conversão alimentar, mas não influencia o desempenho e a composição corporal dos peixes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi identificar e caracterizar os genes cry3, vip1, vip2 e vip1/vip2 em uma coleção de 1.078 isolados de Bacillus thuringiensis potencialmente tóxicos para larvas de coleópteros. Foram utilizados pares de oligonucleotídeos iniciadores gerais obtidos a partir de regiões conservadas dos genes e do alinhamento de sequências consenso. Posteriormente, os isolados positivos foram caracterizados por meio da técnica de PCR‑RFLP, tendo-se utilizado enzimas de restrição específicas, para identificar novas subclasses de genes nos isolados. Cento e cinquenta e um isolados foram positivos para os genes avaliados, com maior frequência para o gene vip1/vip2 (139 isolados). Pela técnica de PCR‑RFLP, foram observados 14 perfis polimórficos, o que indica a presença de diferentes alelos e, consequentemente, de distintas subclasses desses genes.
Resumo:
Beta thalassemia arises as a consequence of the reduction (β+, β++, βsilent) or absence (β0) of beta globin chain synthesis and results from a number of mechanisms that lead to genetic defects. The inheritance of beta thalassemia is characterized by the existence of heterozygous individuals, compound heterozygotes, homozygotes and those with coinheritance of beta thalassemia allele and other thalassemias and/or hemoglobin variants. The aim of this study was to perform molecular and laboratory characterization of beta thalassemia in heterozygous and homozygous individuals and in those with coinheritance of S beta thalassemia. A total of 48 individuals were included (35 heterozygotes, 4 homozygotes and 9 S beta thalessemia carriers) referred to the Integrated Laboratory of Clinical Analyses of the Federal University of Rio Grande do Norte (UFRN) and the Hematology Ambulatory Facility of the Dalton Barbosa Cunha Hemocenter (Hemonorte Natal, Brazil). Peripheral blood samples form each patient underwent the following laboratory examinations: erythrogram, hemoglobin electrophoresis at alkaline pH, measurements of Hb A2, Fetal Hb and serum ferritin. DNA was extracted using the illustra blood genomicPrep Mini Spin Kit and molecular characterization was performed by the PCR/RFLP technique, which involves digestion with specific restriction enzymes for IVS-1 nt 1 (G®A), IVS-1 nt 6 (T®C) and codon 39 (CAG®TAG) mutations. Of the 35 heterozygotes, 37.1% showed IVS-1 nt 6 mutation, 42.9% IVS-1 nt 1 and 20% were carriers of other mutations not identified by the technique used. The four homozygous patients presented with the IVS-1 nt 6 mutation, while 66.7% of the individuals with S beta thalassemia had the IVS-1 nt 1 mutation. Codon 39 was not detected in any of the patients investigated. Of the thallasemic alleles found, 40.4% were IVS- 1 nt 1, 40.4% IVS-1 nt 6 and 19.2% were not identified. Laboratory data showed that the heterozygotes exhibited microcytosis and hypochromia, evidenced by MCV ranging from 57 to 75fL and MCH from 15.9 to 23.6 pg. Hemoglobin A2 varied between 3.7 and 7.2%. The homogygotes also showed reduced MCV and MCH and elevated HbA2.. Comparison of laboratory data between heterozygous individuals with IVS-1 nt 1 and IVS-1 nt 6 mutations showed that heterozygotes for the IVS1-1 mutation had significantly lower mean MCV and MCH (p = 0.023 and 0.007, respectively) and significantly higher hemoglobin A2 (p < 0.001) when compared to heterozygotes for the IVS-1 nt 6 mutation. PCR/RFLP was useful in identifying the presence or absence of IVS-1 nt 6, IVS-1 nt 1 and codon 39 mutations in most of the patients investigated here. This is the first study conducted in the state of Rio Grande do Norte, Brazil aimed at identifying beta thalassemia mutations and represents an important contribution to the knowledge regarding the molecular profile of beta thalassemia in our country
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers
Resumo:
The aim of this study was to determine the effects of the use of rosuvastatin in patients with atherosclerosis, in relation to blood parameters of selenium and selenoproteins, and also observe possible changes in gene expression of selenoproteins in these patients. The sample consisted of 27 adult and elderly patients with a clinical diagnosis of coronary artery disease undergoing angioplasty, treated at Natal Hospital Center hospital, Natal, RN. Patients were treated with rosuvastatin 10 mg/day during four months. Anthropometric variables such as body mass index (BMI) and Waist circumference (WC) were measured before and after treatment, as well as lipid profile, blood glucose and liver enzymes (AST and ALT). The diet of the patients was also analyzed using 24-hour diet recall. We analyzed the concentrations of selenium in plasma and erythrocytes, and also the activity of Glutathione Peroxidase and gene expression by Real Time PCR of selenoproteins GPx1, SelP1 and SelN1. Patients had mean age of 61.0 ± 9.4 years, 59.3% were men and 40.7% were women. After four months of treatment there was significant reduction of CA and, according to BMI, most were overweight. The intake of macronutrients, cholesterol, polyunsaturated fatty acids, monounsaturated and saturated was adequate, but the energy and fiber intake was below the recommendations. Regarding the selenium intake was observed a high prevalence of inadequacy. As expected, after treatment with rosuvastatin, a significant reduction in total cholesterol, LDL and glucose, which was not observed for HDL. Selenium concentrations in plasma and erythrocytes showed no changes, keeping within the established cutoffs. We observed a significant increase in GPx enzyme activity and mRNA expression of GPX1 and SEPN1, but not for gene SEPP1. Thus, it was found that treatment with rosuvastatin did not reduce the expression of selenoproteins. More studies are needed to clarify the effects of rosuvastatin on gene expression of selenoproteins in patients with atherosclerosis