926 resultados para Engineering Process
Resumo:
Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics: basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research. © 2012 The Institution of Chemical Engineers.
Resumo:
* The research work reviewed in this paper has been carried out in the context of the Russian Foundation for Basic Research funded project “Adaptable Intelligent Interfaces Research and Development for Distance Learning Systems”(grant N 02-01-81019). The authors wish to acknowledge the co-operation with the Byelorussian partners of this project.
Resumo:
In this study, we showed various approachs implemented in Artificial Neural Networks for network resources management and Internet congestion control. Through a training process, Neural Networks can determine nonlinear relationships in a data set by associating the corresponding outputs to input patterns. Therefore, the application of these networks to Traffic Engineering can help achieve its general objective: “intelligent” agents or systems capable of adapting dataflow according to available resources. In this article, we analyze the opportunity and feasibility to apply Artificial Neural Networks to a number of tasks related to Traffic Engineering. In previous sections, we present the basics of each one of these disciplines, which are associated to Artificial Intelligence and Computer Networks respectively.
Resumo:
This paper presents the concepts of the intelligent system for aiding of the module assembly technology. The first part of this paper presents a project of intelligent support system for computer aided assembly process planning. The second part includes a coincidence description of the chosen aspects of implementation of this intelligent system using technologies of artificial intelligence (artificial neural networks, fuzzy logic, expert systems and genetic algorithms).
Resumo:
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.
Resumo:
2000 Mathematics Subject Classification: 62J05, 62J10, 62F35, 62H12, 62P30.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
The development of novel, affordable and efficacious therapeutics will be necessary to ensure the continued progression in the standard of global healthcare. With the potential to address previously unmet patient needs as well as tackling the social and economic effects of chronic and age-related conditions, cell therapies will lead the new generation of healthcare products set to improve health and wealth across the globe. However, if many of the small to medium enterprises (SMEs) engaged in much of the commercialization efforts are to successfully traverse the ‘Valley of Death’ as they progress through clinical trials, there are a number of challenges that must be overcome. No longer do the challenges remain biological but rather a series of engineering and manufacturing issues must also be considered and addressed.
Resumo:
The aim of this paper is to propose a conceptual framework for studying the knowledge transfer problem within the supply chain. The social network analysis (SNA) is presented as a useful tool to study knowledge networks within supply chain, to visualize knowledge flows and to identify the accumulating knowledge nodes of the networks. © 2011 IEEE.
Resumo:
The automotive industry combines a multitude of professionals to develop a modern car successfully. Within the design and development teams the collaboration and interface between Engineers and Designers is critical to ensure design intent is communicated and maintained throughout the development process. This study highlights recent industry practice with the emergence of Concept Engineers in design teams at Jaguar Land Rover Automotive group. The role of the Concept Engineer emphasises the importance of the Engineering and Design/Styling interface with the Concept engineer able to interact and understand the challenges and specific languages of each specialist area, hence improving efficiency and communication within the design team. Automotive education tends to approach design from two distinct directions, that of engineering design through BSc courses or a more styling design approach through BA and BDes routes. The educational challenge for both types of course is to develop engineers and stylist's who have greater understanding and experience of each other's specialist perspective of design and development. The study gives examples of two such courses in the UK who are developing programmes to help students widen their understanding of the engineering and design spectrum. Initial results suggest the practical approach has been well received by students and encouraged by industry as they seek graduates with specialist knowledge but also a wider appreciation of their role within the design process.
Resumo:
Drawing from work found in the financial innovation literature, the main objective of this research is to explore the effect of religious orientation towards financial innovation and engineering in Islamic Financial Institutions (IFIs). The research also examines what constitutes this religious orientation and how it is enacted in the innovation process. Religious orientation towards financial innovation is conceptualised and defined, as a system, in this research study. In order to achieve this objective, the study employs multiple theoretical perspectives to develop its theoretical framework. It combines innovation orientation theory with the theory on boundary objects to explore the role of religion in the financial innovation processes in IFIs. Religious orientation
Resumo:
The purpose of this study was to evaluate the mechanical engineering technology curriculum effectiveness at the junior college in Taiwan by using the CIPP evaluation model. The study concerned the areas of the curriculum, curriculum materials, individualized instruction, support services, teaching effectiveness, student achievement, and job performance. A descriptive survey method was used with questionnaires for data collection from faculty, students, graduates, and employers.^ All categories of respondents tended to agree that the curriculum provides appropriate occupational knowledge and skills. Students, graduates, and faculty tended to be satisfied with the curriculum; faculty tended to be satisfied with student achievement; graduates tended to be satisfied with their job preparation; and employers were most satisfied with graduates' job performance.^ Conclusions were drawn in the context, input, process, and product of the CIPP model. In Context area: Students were dissatisfied with curriculum flexibility in students characteristics. Graduates were dissatisfied with curriculum design for student's adaptability in new economic and industrial conditions; practicum flexibility in student characteristics; and course overlap. Both students and graduates were dissatisfied with practicum credit hours. Both faculty and students were dissatisfied with the number of required courses.^ In Input area: Students, faculty, and graduates perceived audiovisuals and manipulative aids positively. Faculty and students perceive CAI implementation positively. Students perceived textbooks negatively.^ In Process area: Faculty, students, and graduates perceived all support service negatively. Faculty tended to perceive the ratios of graduates who enter advanced study and related occupation, and who passed the professional skills certification, negatively. Students tended to perceive teaching effectiveness in terms of instructional strategies, the quality of instruction, overall suitability, and receivable, negatively. Graduates also tended to identify the instructional strategies as a negative perception. Faculty and students perceived curriculum objectives and practicum negatively. Both faculty and students felt that instructors should be more interested in making the courses a useful learning experience.^ In Product area: Employers were satisfied with graduates' academic preparation and job performance, adaptability, punctuality, and their ability to communicate, cooperate, and meet organization needs. Graduates were weak in terms of equipment familiarity and supervisory ability.^ In sum, the curriculum of the five-year mechanical engineering technology programs of junior college in Taiwan has served adequately up to this time in preparing a work force to enter industry. It is now time to look toward the future and adapt the curriculum and instruction for the future needs of this high-tech society. ^
Resumo:
Parameter design is an experimental design and analysis methodology for developing robust processes and products. Robustness implies insensitivity to noise disturbances. Subtle experimental realities, such as the joint effect of process knowledge and analysis methodology, may affect the effectiveness of parameter design in precision engineering; where the objective is to detect minute variation in product and process performance. In this thesis, approaches to statistical forced-noise design and analysis methodologies were investigated with respect to detecting performance variations. Given a low degree of process knowledge, Taguchi's methodology of signal-to-noise ratio analysis was found to be more suitable in detecting minute performance variations than the classical approach based on polynomial decomposition. Comparison of inner-array noise (IAN) and outer-array noise (OAN) structuring approaches showed that OAN is a more efficient design for precision engineering. ^
Resumo:
Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings. ^
Resumo:
This research examines evolving issues in applied computer science and applies economic and business analyses as well. There are two main areas. The first is internetwork communications as embodied by the Internet. The goal of the research is to devise an efficient pricing, prioritization, and incentivization plan that could be realistically implemented on the existing infrastructure. Criteria include practical and economic efficiency, and proper incentives for both users and providers. Background information on the evolution and functional operation of the Internet is given, and relevant literature is surveyed and analyzed. Economic analysis is performed on the incentive implications of the current pricing structure and organization. The problems are identified, and minimally disruptive solutions are proposed for all levels of implementation to the lowest level protocol. Practical issues are considered and performance analyses are done. The second area of research is mass market software engineering, and how this differs from classical software engineering. Software life-cycle revenues are analyzed and software pricing and timing implications are derived. A profit maximizing methodology is developed to select or defer the development of software features for inclusion in a given release. An iterative model of the stages of the software development process is developed, taking into account new communications capabilities as well as profitability. ^