875 resultados para Energy-band theory of solids.
Resumo:
A method for determining effective dielectric responses of Kerr-like coated nonlinear composites under the alternating current (AC) electric field is proposed by using perturbation approach. As an example, we have investigated the composite with coated cylindrical inclusions randomly embedded in a host under an external sinusoidal field with finite frequency omega. The local field and potential of composites in general consists of components with all harmonic frequencies. The effective nonlinear AC responses at all harmonics are induced by the coated nonlinear composites because of the nonlinear constitutive relation. Moreover, we have derived the formulae of effective nonlinear AC responses at the fundamental frequency and the third harmonic in the dilute limit.
Resumo:
The general forms of the conservation of momentum, temperature and potential vorticity of coastal ocean are obtained in the x-z plane for the nonlinear ocean circulation of Boussinesq fluid, and a elliptic type partial differential equations of second order are derived. Solution of the partial differential equations are obtained under the conditions that the fluid moves along the topography. The numerical results show that there exist both upwelling and downwelling along coastline that mainly depends on the large scale ocean condition. Numerically results of the upwelling (downwelling), coastal jet and temperature front zone are favorable to the observations.
Resumo:
Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
Resumo:
Learning an input-output mapping from a set of examples can be regarded as synthesizing an approximation of a multi-dimensional function. From this point of view, this form of learning is closely related to regularization theory. In this note, we extend the theory by introducing ways of dealing with two aspects of learning: learning in the presence of unreliable examples and learning from positive and negative examples. The first extension corresponds to dealing with outliers among the sparse data. The second one corresponds to exploiting information about points or regions in the range of the function that are forbidden.