907 resultados para Energy density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A density-functional approach on the hexagonal graphene lattice is developed using an exact numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the local density approximation are parameterized for both variants. The method is used to calculate the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are found to agree with exact diagonalization for small systems, also if local impurities are present. In addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of the scope of exact diagonalization methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited C-2 symmetry and spin parity of the system to obtain excited states of experimental interest, and studied the lowest dipole allowed excited state and lowest dipole forbidden two photon state, for different oligomer sizes. In the long system limit, the dipole allowed excited state always lies below the lowest dipole forbidden two-photon state which implies, by Kasha rule, that polythiophene fluoresces strongly. The lowest triplet state lies below two-photon state as usual in conjugated polymers. We have doped the system with a hole and an electron and obtained the charge excitation gap and the binding energy of the 1(1)B(u)(-) exciton. We have calculated the charge density of the ground, one-photon and two-photon states for the longer system size of 10 thiophene rings to characterize these states. We have studied bond order in these states to get an idea about the equilibrium excited state geometry of the system. We have also studied the charge density distribution of the singly and doubly doped polarons for longer system size, and observe that polythiophenes do not support bipolarons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The striking lack of observable variation of the volume fraction with height in the center of a granular flow down an inclined plane is analysed using constitutive relations obtained from kinetic theory. It is shown that the rate of conduction in the granular energy balance equation is O(delta(2)) smaller than the rate of production of energy due to mean shear and the rate of dissipation due to inelastic collisions, where the small parameter delta = (d/(1 - e(n))H-1/2), d is the particle diameter, en is the normal coefficient of restitution and H is the thickness of the flowing layer. This implies that the volume fraction is a constant in the leading approximation in an asymptotic analysis in small delta. Numerical estimates of both the parameter delta and its pre-factor are obtained to show that the lack of observable variation of the volume fraction with height can be explained by constitutive relations obtained from kinetic theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for describing dislocations and other topological defects in crystals. Quantitative calculations are presented for the order-parameter profiles, the atomic configuration, and the free energy of a screw dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done using a simple parametrization of the direct correlation function and a gradient expansion. It is conventional to express the free energy of the dislocation in a crystal of size R as (λb2/4π)ln(αR/‖b‖), where λ is the shear elastic constant, and α is a measure of the core energy. Our results yield for Na the value α≃1.94a/(‖c1’’‖)1/2 (≃1.85) at the freezing temperature (371 K) and α≃2.48a/(‖c1’’‖)1/2 at 271 K, where c1’’ is the curvature of the first peak of the direct correlation function c(q). Detailed results for the density distribution in the dislocation, particularly the core region, are also presented. These show that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order-parameter theory and incorporating thermal effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach for describing dislocations and other topological defects in crystals, based on the density wave theory of Ramakrishnan and Yussouff is presented. Quantitative calculations are discussed in brief for the order parameter profiles, the atomic configuration and the free energy of a screw dislocation with Burgers vector b = (a/2, a/2,a/2 ) in a bcc solid. Our results for the free energy of the dislocation in a crystal of sizeR, when expressed as (λb 2/4π) ln (αR/|b|) whereλ is the shear elastic constant, yield, for example, the valueα ⋍ 1·85 for sodium at its freezing temperature (371°K). The density distribution in the presence of the dislocation shows that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order parameter theory incorporating thermal effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mean-field description of the glass transition in the hard-sphere system is obtained by numerically locating "glassy" minima of a model free-energy functional. These minima, characterized by inhomogeneous but aperiodic density distributions, appear as the average density is increased above the value at which equilibrium crystallization takes place. Investigations of the density distribution and local bond-orientational order at these minima yield results similar to those obtained from simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distinctive feature of single-layer graphene is the linearly dispersive energy bands, which in the case of multilayer graphene become parabolic. A simple electrical transport-based probe to differentiate between these two band structures will be immensely valuable, particularly when quantum Hall measurements are difficult, such as in chemically synthesized graphene nanoribbons. Here we show that the flicker noise, or the 1/f noise, in electrical resistance is a sensitive and robust probe to the band structure of graphene. At low temperatures, the dependence of noise magnitude on the carrier density was found to be opposite for the linear and parabolic bands. We explain our data with a comprehensive theoretical model that clarifies several puzzling issues concerning the microscopic origin of flicker noise in graphene field-effect transistors (GraFET).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the density-matrix renormalization-group technique, we study the ground-state phase diagram and other low-energy properties of an isotropic antiferromagnetic spin-1/2 chain with both dimerization and frustration, i.e., an alternation delta of the nearest-neighbor exchanges and a next-nearest-neighbor exchange J(2). For delta = 0, the system is gapless for J(2) < J(2c) and has a gap for J(2) > J(2c) where J(2c) is about 0.241. For J(2) = J(2c) the gap above the ground state grows as delta to the power 0.667 +/- 0.001. In the J(2)-delta plane, there is a disorder line 2J(2) + delta = 1. To the left of this line, the peak in the static structure factor S(q) is at q(max) = pi (Neel phase), while to the right of the line, q(max) decreases from pi to pi/2 as J(2) is increased to large values (spiral phase). For delta = 1, the system is equivalent to two coupled chains as on a ladder and it is gapped for all values of the interchain coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time scales associated with activated transitions between glassy metastable states of a free-energy functional appropriate for a dense hard-sphere system are calculated by using a new Monte Carlo method for the local density variables. In particular, we calculate the time the system, initially placed in a shallow glassy minimum of the free-energy, spends in the neighborhood of this minimum before making a transition to the basin of attraction of another free-energy minimum. This time scale is found to increase as the average density is increased. We find a crossover density near which this time scale increases very sharply and becomes longer than the longest times accessible in our simulation. This time scale does not show any evidence of increasing with sample size

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-irradiation studies have been carried out to elucidate the effects of electron beam irradiation on the structural, optical, dielectric, and thermal properties of high-density polyethylene (HDPE) films. The experimental results showed that both the optical band gap and activation energy of HDPE films decreases with an increase in the doses of electron radiation. The electrical measurements showed that dielectric constant and the ac conductivity of HDPE increases with an increase in the dose of electron radiation. The thermal analysis carried out using DSC and TGA revealed that the melting temperature, degree of crystallinity, and thermal stability of the HDPE films increased, obviously, due to the predominant cross-linking reaction following high doses of electron irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have carried out symmetrized density-matrix renormalization-group calculations to study the nature of excited states of long polyacene oligomers within a Pariser-Parr-Pople Hamiltonian. We have used the C-2 symmetry, the electron-hole symmetry, and the spin parity of the system in our calculations. We find that there is a crossover in the lowest dipole forbidden two-photon state and the lowest dipole allowed excited state with size of the oligomer. In the long system limit, the two-photon state lies below the lowest dipole allowed excited state. The triplet state lies well below the two-photon state and energetically does not correspond to its description as being made up of two triplets. These results are in agreement with the general trends in linear conjugated polymers. However, unlike in linear polyenes wherein the two-photon state is a localized excitation, we find that in polyacenes, the two-photon excitation is spread out over the system. We have doped the systems with a hole and an electron and have calculated the charge excitation gap. Using the charge gap and the optical gap, we estimate the binding energy of the 1(1)B(-) exciton to be 2.09 eV. We have also studied doubly doped polyacenes and find that the bipolaron in these systems, to be composed of two separated polarons, as indicated by the calculated charge-density profile and charge-charge correlation function. We have studied bond orders in various states in order to get an idea of the excited state geometry of the system. We find that the ground state, the triplet state, the dipole allowed state, and the polaron excitations correspond to lengthening of the rung bonds in the interior of the oligomer while the two-photon excitation corresponds to the rung bond lengths having two maxima in the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a method of tracking the peak power in a wind energy conversion system (WECS) is proposed, which is independent of the turbine parameters and air density. The algorithm searches for the peak power by varying the speed in the desired direction. The generator is operated in the speed control mode with the speed reference being dynamically modified in accordance with the magnitude and direction of change of active power. The peak power points in the P-omega curve correspond to dP/domega = 0. This fact is made use of in the optimum point search algorithm. The generator considered is a wound rotor induction machine whose stator is connected directly to the grid and the rotor is fed through back-to-back pulse-width-modulation (PWM) converters. Stator flux-oriented vector control is applied to control the active and reactive current loops independently. The turbine characteristics are generated by a dc motor fed from a commercial dc drive. All of the control loops are executed by a single-chip digital signal processor (DSP) controller TMS320F240. Experimental results show that the performance of the control algorithm compares well with the conventional torque control method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.