950 resultados para Energy Consumption.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy consumption in heating and cooling around the world has been a major contributor to global warming. Hence, many studies have been aimed at finding new techniques to save and control energy through energy efficient measures. Most of this energy is used in residential, agricultural and commercial buildings. It is therefore important to adopt energy efficiency measures in these buildings through new technologies and novel building designs. These new building designs can be developed by employing various passive cooling systems. Earth pipe cooling is one of these which can assist to save energy without using any customary mechanical units. This paper investigates the earth pipe cooling performance in a hot humid subtropical climate of Rockhampton, Australia. A thermal model is developed using ANSYS Fluent for measuring its performance. Impacts of air velocity, air temperature, relative humidity and soil temperature on room cooling performance are also assessed. A temperature reduction of around 2 °C was found for the system. This temperature reduction contributed to an energy saving of a maximum of 866.54 kW (8.82%) per year for a 27.23 m3 room.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The expected pervasive use of mobile cloud computing and the growing number of Internet data centers have brought forth many concerns, such as, energy costs and energy saving management of both data centers and mobile connections. Therefore, the need for adaptive and distributed resource allocation schedulers for minimizing the communication-plus-computing energy consumption has become increasingly important. In this paper, we propose and test an efficient dynamic resource provisioning scheduler that jointly minimizes computation and communication energy consumption, while guaranteeing user Quality of Service (QoS) constraints. We evaluate the performance of the proposed dynamic resource provisioning algorithm with respect to the execution time, goodput and bandwidth usage and compare the performance of the proposed scheduler against the exiting approaches. The attained experimental results show that the proposed dynamic resource provisioning algorithm achieves much higher energy-saving than the traditional schemes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

QoS plays a key role in evaluating a service or a service composition plan across clouds and data centers. Currently, the energy cost of a service's execution is not covered by the QoS framework, and a service's price is often fixed during its execution. However, energy consumption has a great contribution in determining the price of a cloud service. As a result, it is not reasonable if the price of a cloud service is calculated with a fixed energy consumption value, if part of a service's energy consumption could be saved during its execution. Taking advantage of the dynamic energy-Aware optimal technique, a QoS enhanced method for service computing is proposed, in this paper, through virtual machine (VM) scheduling. Technically, two typical QoS metrics, i.e., the price and the execution time are taken into consideration in our method. Moreover, our method consists of two dynamic optimal phases. The first optimal phase aims at dynamically benefiting a user with discount price by transparently migrating his or her task execution from a VM located at a server with high energy consumption to a low one. The second optimal phase aims at shortening task's execution time, through transparently migrating a task execution from a VM to another one located at a server with higher performance. Experimental evaluation upon large scale service computing across clouds demonstrates the validity of our method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cloud computing as the latest computing paradigm has shown its promising future in business workflow systems facing massive concurrent user requests and complicated computing tasks. With the fast growth of cloud data centers, energy management especially energy monitoring and saving in cloud workflow systems has been attracting increasing attention. It is obvious that the energy for running a cloud workflow instance is mainly dependent on the energy for executing its workflow activities. However, existing energy management strategies mainly monitor the virtual machines instead of the workflow activities running on them, and hence it is difficult to directly monitor and optimize the energy consumption of cloud workflows. To address such an issue, in this paper, we propose an effective energy testing framework for cloud workflow activities. This framework can help to accurately test and analyze the baseline energy of physical and virtual machines in the cloud environment, and then obtain the energy consumption data of cloud workflow activities. Based on these data, we can further produce the energy consumption model and apply energy prediction strategies. Our experiments are conducted in an OpenStack based cloud computing environment. The effectiveness of our framework has been successfully verified through a detailed case study and a set of energy modelling and prediction experiments based on representative time-series models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because of the strong demands of physical resources of big data, it is an effective and efficient way to store and process big data in clouds, as cloud computing allows on-demand resource provisioning. With the increasing requirements for the resources provisioned by cloud platforms, the Quality of Service (QoS) of cloud services for big data management is becoming significantly important. Big data has the character of sparseness, which leads to frequent data accessing and processing, and thereby causes huge amount of energy consumption. Energy cost plays a key role in determining the price of a service and should be treated as a first-class citizen as other QoS metrics, because energy saving services can achieve cheaper service prices and environmentally friendly solutions. However, it is still a challenge to efficiently schedule Virtual Machines (VMs) for service QoS enhancement in an energy-aware manner. In this paper, we propose an energy-aware dynamic VM scheduling method for QoS enhancement in clouds over big data to address the above challenge. Specifically, the method consists of two main VM migration phases where computation tasks are migrated to servers with lower energy consumption or higher performance to reduce service prices and execution time. Extensive experimental evaluation demonstrates the effectiveness and efficiency of our method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Precise estimation of solar energy on building roofs plays a critical role in sustainable development and renewable energy consumption of high-density human habitats. Conventional solar radiation models based on costly Light Detection and Ranging (LiDAR) data are only adequate for existing buildings, not for future construction areas. In this paper, a pixel-based methodology is constructed for estimating solar energy potential over roofs. Buildings with flat roofs in a newly planned construction area are chosen as a case study. The solar radiation at a certain cell is mathematically formulated in the pixel unit, and its yields over a certain time period are calculated by considering multiple instantaneous solar irradiances and are visually presented by image processing. Significant spatial and temporal variations in solar radiation are measured. Within the study area, the maximum and minimum annual radiation yields are estimated at 4717.72 MJ/m2/year and 342.58 MJ/m2/year respectively. Radiation contour lines are then mapped for outlining installation ranges of various solar devices. For each apartment building, around 20% of roof areas can obtain 4500 MJ/m2/year or more solar radiation yields. This study will benefit energy investors and urban planners in accurately predicting solar radiation potential and identifying regions with high radiation over building roofs. The results can be utilised in government policies and urban planning to raise awareness of the use of renewable energy sources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

18 months embargo on the thesis and check appendix for copy right materials

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Appliance Load Monitoring (ALM) is essential for energy management solutions, allowing them to obtain appliance-specific energy consumption statistics that can further be used to devise load scheduling strategies for optimal energy utilization. Fine-grained energy monitoring can be achieved by deploying smart power outlets on every device of interest; however it incurs extra hardware cost and installation complexity. Non-Intrusive Load Monitoring (NILM) is an attractive method for energy disaggregation, as it can discern devices from the aggregated data acquired from a single point of measurement. This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing. We review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The South Carolina General Assembly passed legislation in early June 2008 requiring all state agencies to develop energy conservation plans to reduce their energy consumption by one percent per year during fiscal years 2009-2013 and by a total of a 20 percent reduction in energy use by 2020. This legislation requires that each of these entities develop an energy conservation plan that addresses how it will meet energy use reduction goals and submit it to SCEO. This annual report reports the statewide progress in meeting the energy use reduction goals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the design and evaluation of a platform for networks of cameras in low-bandwidth, low-power sensor networks. In our work to date we have investigated two different DSP hardware/software platforms for undertaking the tasks of compression and object detection and tracking. We compare the relative merits of each of the hardware and software platforms in terms of both performance and energy consumption. Finally we discuss what we believe are the ongoing research questions for image processing in WSNs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the design and implementation of a public-key platform, secFleck, based on a commodity Trusted Platform Module (TPM) chip that extends the capability of a standard node. Unlike previous software public-key implementations this approach provides E- Commerce grade security; is computationally fast, energy efficient; and has low financial cost — all essential attributes for secure large-scale sen- sor networks. We describe the secFleck message security services such as confidentiality, authenticity and integrity, and present performance re- sults including computation time, energy consumption and cost. This is followed by examples, built on secFleck, of symmetric key management, secure RPC and secure software update.