932 resultados para Emitter spacing
Resumo:
Apresenta-se uma abordagemnumérica para ummodelo que descreve a formação de padrões por sputtering iônico na superfície de ummaterial. Esse processo é responsável pela formação de padrões inesperadamente organizados, como ondulações, nanopontos e filas hexagonais de nanoburacos. Uma análise numérica de padrões preexistentes é proposta para investigar a dinâmica na superfície, baseada em ummodelo resumido em uma equação anisotrópica amortecida de Kuramoto-Sivashinsky, em uma superfície bidimensional com condições de contorno periódicas. Apesar de determinística, seu caráter altamente não-linear fornece uma rica gama de resultados, sendo possível descrever acuradamente diferentes padrões. Umesquema semi implícito de diferenças finitas com fatoração no tempo é aplicado na discretização da equação governante. Simulações foram realizadas com coeficientes realísticos relacionados aos parâmetros físicos (anisotropias, orientação do feixe, difusão). A estabilidade do esquema numérico foi analisada por testes de passo de tempo e espaçamento de malha, enquanto a verificação do mesmo foi realizada pelo Método das Soluções Manufaturadas. Ondulações e padrões hexagonais foram obtidos a partir de condições iniciais monomodais para determinados valores do coeficiente de amortecimento, enquanto caos espaço-temporal apareceu para valores inferiores. Os efeitos anisotrópicos na formação de padrões foramestudados, variando o ângulo de incidência.
Resumo:
In this paper we report the development of 1.4 kV 25 A PT and NPT Trench IGBTs with ultra-low on-resistance, latch-up free operation and highly superior overall performance when compared to previously reported DMOS IGBTs in the same class. We have fabricated both PT and transparent anode NPT devices to cover a wide range of applications which require very low on-state losses or very fast time with ultra-low switching losses. The minimum forward voltage drop at the standard current density of 100A/cm2 was 1.1 V for PT non-irradiated devices and 2.1 V for 16 MRad PT irradiated devices. The non-irradiated transparent emitter NPT structure has a typical forward voltage drop of 2.2 V, a turn-off time below 100 ns and turn-off energy losses of 11.2 mW/cm2 at 125 C. The maximum controllable current density was in excess of 1000A/cm2.
Resumo:
A microelectronic parallel electron-beam lithography system using an array of field emitting microguns is currently being developed. This paper investigates the suitability of various carbon based materials for the electron source in this device, namely tetrahedrally bonded amorphous carbon (ta-C), nanoclustered carbon and carbon nanotubes. Ta-C was most easily integrated into a gated field emitter structure and various methods, such as plasma and heavy ion irradiation, were used to induce emission sites in the ta-C. However, the creation of such emission sites at desired locations appeared to be difficult/random in nature and thus the material was unsuitable for this application. In contrast, nanoclustered carbon material readily field emits with a high site density but the by-products from the deposition process create integration issues when using the material in a microelectronic gated structure. Carbon nanotubes are currently the most promising candidate for use as the emission source. We have developed a high yield and clean (amorphous carbon by-product free) PECVD process to deposit single free standing nanotubes at desired locations with exceptional uniformity in terms of nanotube height and diameter. Field emission from an array of nanotubes was also obtained. © 2001 Elsevier Science B.V.
Resumo:
A detailed physical model of amorphous silicon (aSi:H) is incorporated into a twodimensional device simulator to examine the frequency response limits of silicon heterojunction bipolar transistors (HBT's) with aSi:H emitters. The cutoff frequency is severely limited by the transit time in the emitter space charge region, due to the low electron drift mobility in aSi:H, to 98 MHz which compares poorly with the 37 GHz obtained for a silicon homojunction bipolar transistor with the same device structure. The effects of the amorphous heteroemitter material parameters (doping, electron drift mobility, defect density and interface state density) on frequency response are then examined to find the requirements for an amorphous heteroemitter material such that the HBT has better frequency response than the equivalent homojunction bipolar transistor. We find that an electron drift mobility of at least 100 cnr'V"'"1 is required in the amorphous heteroemitter and at a heteroemitter drift mobility of 350 cm2 · V1· s1 and heteroemitter doping of 5×1017 cm3, a maximum cutoff frequency of 52 GHz can be expected. © 1996 IEEE.
Resumo:
This document presents the modeling and characterization of novel optical devices based on periodic arrays of multiwalled carbon nanotubes. Vertically aligned carbon nanotubes can be grown in the arrangement of two-dimensional arrays of precisely determined dimensions. Having their dimensions comparable to the wavelength of light makes carbon nanotubes good candidates for utilization in nano-scale optical devices. We report that highly dense periodic arrays of multiwalled carbon nanotubes can be utilized as sub-wavelength structures for establishing advanced optical materials, such as metamaterials and photonic crystals. We demonstrate that when carbon nanotubes are grown close together at spacing of the order of few hundred nanometers, they display artificial optical properties towards the incident light, acting as metamaterials. By utilizing these properties we have established micro-scaled plasmonic high pass filter which operates in the optical domain. Highly dense arrays of multiwalled also offer a periodic dielectric constant to the incident light and display interesting photonic band gaps, which are frequency domains within which on wave propagation can take place. We have utilized these band gaps displayed by a periodic nanotube array, having 400 nm spacing, to construct photonic crystals based optical waveguides and switches. © 2011 IEEE.
Resumo:
This paper presents direct growth of horizontally aligned carbon nanotubes (CNTs) between two predefined various inter-spacing up to tens of microns of electrodes (pads) and its use as CNT field-effect transistors (CNT-FETs). The catalytic metals were prepared, consisting of iron (Fe), aluminum (Al) and platinum (Pt) triple layers, on the thermal silicon oxide substrate (Pt/Al/Fe/SiO2). Scanning electron microscopy measurements of CNT-FETs from the as-grown samples showed that over 80% of the nanotubes are grown across the catalytic electrodes. Moreover, the number of CNTs across the catalytic electrodes is roughly controllable by adjusting the growth condition. The Al, as the upper layer on Fe electrode, not only plays a role as a barrier to prevent vertical growth but also serves as a porous medium that helps in forming smaller nano-sized Fe particles which would be necessary for lateral growth of CNTs. Back-gate field effect transistors were demonstrated with the laterally aligned CNTs. The on/off ratios in all the measured devices are lower than 100 due to the drain leakage current. ©2010 IEEE.
Resumo:
Here we demonstrate that a free-standing carbon nanotube (CNT) array can be used as a large surface area and high porosity 3D platform for molecular imprinted polymer (MIP), especially for surface imprinting. The thickness of polymer grafted around each CNT can be fine-tuned to imprint different sizes of target molecules, and yet it can be thin enough to expose every imprint site to the target molecules in solution without sacrificing the capacity of binding sites. The performance of this new CNT-MIP architecture was first assessed with a caffeine-imprinted polypyrrole (PPy) coating on two types of CNT arrays: sparse and dense CNTs. Real-time pulsed amperometric detection was used to study the rebinding of the caffeine molecules onto these CNT-MIPPy sensors. The dense CNT-MIPPy sensor presented the highest sensitivity, about 15 times better when compared to the conventional thin film, whereas an improvement of 3.6 times was recorded on the sparse CNT. However, due to the small tube-to-tube spacing in the dense CNT array, electrode fouling was observed during the detection of concentrated caffeine in phosphate buffer solution. A new I-V characterization method using pulsed amperometry was introduced to investigate the electrical characterization of these new devices. The resistance value derived from the I-V plot provides insight into the electrical conductivity of the CNT transducer and also the effective surface area for caffeine imprinting.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We estimate monthly runoff for a 2-dimensional solution domain containing those areas tributary to Pyramid Lake, Nevada (the Truckee River drainage basin) at a 1-kilometer grid cell spacing. ... To calculate the effect of snow on the hydrologic system, we perform two experiments. In the first we assume that all precipitation falls as rain; in the second we assume that some precipitation falls as snow, thus available water is a combination of rain and snowmelt. We find that considering the effect of snow results in a more accurate representation of mean monthly flow rates, in particular the peak flow during the melt season in the Sierra Nevada. These preliminary results indicate that a relatively simple snow model can improve the representation of Truckee River basin hydrology, significantly reducing errors in modeled seasonal runoff.
Resumo:
Studies are carried out to find a suitable basis of specifying scantlings for wooden fishing vessels for India, especially for the range 30' to 50' length overall. Equations of the type y=a (where 'y' is scantling in inches, N is cubic numeral in ft³ and 'a', 'b' are constants) are fitted to the scantling tables (applicable to vessels 50’ and above) available from USA, Newfoundland, Denmark, France and Scotland and they are found to represent the regulations accurately. These lines are corrected for standard frame and beam spacing and molded/sided dimensions to bring them on a common basis for comparison and minimum scantling lines for the main structural members are derived. These lines are extended to cover the range 30' to 50' which is generally outside the range of the above regulations.
Resumo:
Resonant tunnelling spectroscopy is used to investigate the energy level spectrum of a wide potential well in the presence of a large magnetic field oriented at angles θ between 0° and 90° to the normal to the plane of the well. In the tilted field geometry, the current-voltage characteristics exhibit a large number of quasiperiodic resonant peaks even though the classical motion of electrons in the potential well is chaotic. The voltage range and spacing of the resonances both change dramatically with θ. We give a quantitative explanation for this behaviour by considering the classical period of unstable periodic orbits within the chaotic sea of the potential well.
Resumo:
The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The flow field within an unsteady ejector has been investigated using experimental and computational techniques. The experimental results show a peak thrust augmentation of 1.4; numerical simulation gives a value of 1.37. It is shown that the vortex ring dominates the flow field. At optimal thrust augmentation the vortex ring acts like a fluid piston accelerating the fluid inside the ejector. A model is proposed for the operation of unsteady ejectors, based on the vortex ring acting like a fluid piston. Control volume analysis is presented showing that mass entrainment is responsible for thrust augmentation. It is proposed that the spacing of successive vortex rings determines the mass entrainment and therefore thrust augmentation. The efficiency of unsteady ejectors was found to vary between 28% and 32% depending on the L/D ratio of the unsteady jet source. Copyright © 2008 by J H Heffer.
Resumo:
mark Unsteady ejectors can be driven by a wide range of driver jets. These vary from pulse detonation engines, which typically have a long gap between each slug of fluid exiting the detonation tube (mark-space ratios in the range 0.1-0.2) to the exit of a pulsejet where the mean mass flow rate leads to a much shorter gap between slugs (mark-space ratios in the range 2-3). The aim of this paper is to investigate the effect of mark-space ratio on the thrust augmentation of an unsteady ejector. Experimental testing was undertaken using a driver jet with a sinusoidal exit velocity profile. The mean value, amplitude and frequency of the velocity profile could be changed allowing the length to diameter ratio of the fluid slugs L/D and the mark-space ratio (the ratio of slug length to the spacing between slugs) L/S to be varied. The setup allowed L/S of the jet to vary from 0.8 to 2.3, while the L/D ratio of the slugs could take any values between 3.5 and 7.5. This paper shows that as the mark-space ratio of the driver jet is increased the thrust augmentation drops. Across the range of mark-space ratios tested, there is shown to be a drop in thrust augmentation of 0.1. The physical cause of this reduction in thrust augmentation is shown to be a decrease in the percentage time over which the ejector entrains ambient fluid. This is the direct result ofthe space between consecutive slugs in the driver jet decreasing. The one dimensional model reported in Heffer et al. [1] is extended to include the effect of varying L/S and is shown to accurately capture the experimentally measured behavior ofthe ejector. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Finite Element Analysis (FEA) is used to calibrate a decision-making tool based on an extension of the Mobilized Strength Design (MSD) method which permits the designer an extremely simple method of predicting ground displacements during construction. This newly extended MSD approach accommodates a number of issues which are important in underground construction between in-situ walls, including: alternative base heave mechanisms suitable either for wide excavations in relatively shallow soft clay strata, or narrow excavations in relatively deep soft strata; the influence of support system stiffness in relation to the sequence of propping of the wall; and the capability of dealing with stratified ground. These developments should make it possible for a design engineer to take informed decisions on the relationship between prop spacing and ground movements, or the influence of wall stiffness, or on the need for and influence of a jet-grouted base slab, for example, without having to conduct project-specific FEA. © 2009 Taylor & Francis Group.